Metamath Proof Explorer


Theorem r1filim

Description: A finite set appears in the cumulative hierarchy prior to a limit ordinal iff all of its elements appear in the cumulative hierarchy prior to that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026)

Ref Expression
Assertion r1filim A Fin Lim B A R1 B x A x R1 B

Proof

Step Hyp Ref Expression
1 r1elcl A R1 y x A x R1 y
2 1 expcom x A A R1 y x R1 y
3 2 reximdv x A y B A R1 y y B x R1 y
4 r1funlim Fun R1 Lim dom R1
5 4 simpli Fun R1
6 eluniima Fun R1 A R1 B y B A R1 y
7 5 6 ax-mp A R1 B y B A R1 y
8 eluniima Fun R1 x R1 B y B x R1 y
9 5 8 ax-mp x R1 B y B x R1 y
10 3 7 9 3imtr4g x A A R1 B x R1 B
11 10 com12 A R1 B x A x R1 B
12 11 ralrimiv A R1 B x A x R1 B
13 r1filimi A Fin x A x R1 B Lim B A R1 B
14 13 3com23 A Fin Lim B x A x R1 B A R1 B
15 14 3expia A Fin Lim B x A x R1 B A R1 B
16 12 15 impbid2 A Fin Lim B A R1 B x A x R1 B