| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raleq |
|
| 2 |
|
eleq1 |
|
| 3 |
1 2
|
imbi12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
r1funlim |
|
| 6 |
5
|
simpli |
|
| 7 |
|
eluniima |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
limord |
|
| 10 |
|
ordsson |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
sseld |
|
| 13 |
12
|
anim1d |
|
| 14 |
13
|
reximdv2 |
|
| 15 |
8 14
|
biimtrid |
|
| 16 |
15
|
ralimdv |
|
| 17 |
|
vex |
|
| 18 |
17
|
tz9.12 |
|
| 19 |
|
eluniima |
|
| 20 |
6 19
|
ax-mp |
|
| 21 |
18 20
|
sylibr |
|
| 22 |
16 21
|
syl6 |
|
| 23 |
4 22
|
vtoclg |
|
| 24 |
23
|
impcomd |
|
| 25 |
24
|
3impib |
|
| 26 |
|
simp3 |
|
| 27 |
|
simp1 |
|
| 28 |
|
eluniima |
|
| 29 |
6 28
|
ax-mp |
|
| 30 |
|
df-rex |
|
| 31 |
|
rankr1ai |
|
| 32 |
|
ordtr1 |
|
| 33 |
31 32
|
sylani |
|
| 34 |
33
|
ancomsd |
|
| 35 |
34
|
exlimdv |
|
| 36 |
30 35
|
biimtrid |
|
| 37 |
29 36
|
biimtrid |
|
| 38 |
37
|
ralimdv |
|
| 39 |
9 38
|
syl |
|
| 40 |
39
|
impcom |
|
| 41 |
40
|
3adant1 |
|
| 42 |
|
rankfilimbi |
|
| 43 |
27 25 41 26 42
|
syl22anc |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
eleq2d |
|
| 46 |
|
limsuc |
|
| 47 |
46
|
biimpa |
|
| 48 |
47
|
3adant1 |
|
| 49 |
|
rankidb |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
45 48 50
|
rspcedvdw |
|
| 52 |
|
eluniima |
|
| 53 |
6 52
|
ax-mp |
|
| 54 |
51 53
|
sylibr |
|
| 55 |
25 26 43 54
|
syl3anc |
|