| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 2 |
|
limsuc |
⊢ ( Lim 𝐵 → ( ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 |
2
|
ralbidv |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 |
3
|
biimpd |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 5 |
|
fvex |
⊢ ( rank ‘ 𝑥 ) ∈ V |
| 6 |
5
|
sucex |
⊢ suc ( rank ‘ 𝑥 ) ∈ V |
| 7 |
6
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ V |
| 8 |
|
uniiunlem |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ V → ( ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ 𝐵 ↔ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ) |
| 10 |
4 9
|
imbitrdi |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ) ) |
| 11 |
10
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ) |
| 13 |
|
limord |
⊢ ( Lim 𝐵 → Ord 𝐵 ) |
| 14 |
|
0ellim |
⊢ ( Lim 𝐵 → ∅ ∈ 𝐵 ) |
| 15 |
14
|
ne0d |
⊢ ( Lim 𝐵 → 𝐵 ≠ ∅ ) |
| 16 |
13 15
|
jca |
⊢ ( Lim 𝐵 → ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) |
| 17 |
16
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) |
| 18 |
|
rankval4b |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 19 |
6
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) → ( rank ‘ 𝐴 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( rank ‘ 𝐴 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ) |
| 23 |
|
abrexfi |
⊢ ( 𝐴 ∈ Fin → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ∈ Fin ) |
| 24 |
|
fissorduni |
⊢ ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ∈ Fin ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ∈ 𝐵 ) |
| 25 |
23 24
|
syl3an1 |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ∈ 𝐵 ) |
| 26 |
25
|
3adant1r |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ∈ 𝐵 ) |
| 27 |
22 26
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = suc ( rank ‘ 𝑥 ) } ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 28 |
1 12 17 27
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |