| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1wf |
⊢ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ∪ ( 𝑅1 “ On ) |
| 2 |
|
rankon |
⊢ ( rank ‘ 𝑥 ) ∈ On |
| 3 |
2
|
onsuci |
⊢ suc ( rank ‘ 𝑥 ) ∈ On |
| 4 |
3
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On |
| 5 |
|
iunon |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) |
| 6 |
4 5
|
mpan2 |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) |
| 7 |
|
r1ord3 |
⊢ ( ( suc ( rank ‘ 𝑥 ) ∈ On ∧ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 8 |
3 6 7
|
sylancr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 9 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 10 |
8 9
|
impel |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 11 |
|
elwf |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 12 |
|
rankidb |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ) |
| 14 |
10 13
|
sseldd |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 15 |
14
|
ex |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 16 |
15
|
alrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅1 |
| 19 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 20 |
18 19
|
nffv |
⊢ Ⅎ 𝑥 ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 21 |
17 20
|
dfssf |
⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 22 |
16 21
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 23 |
|
rankssb |
⊢ ( ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) ) |
| 24 |
1 22 23
|
mpsyl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 25 |
|
r1ord3 |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 26 |
6 25
|
sylan |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑦 ∈ On ) → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 27 |
26
|
ss2rabdv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ) |
| 28 |
|
intss |
⊢ ( { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } → ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ) |
| 29 |
27 28
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ) |
| 30 |
|
rankval2b |
⊢ ( ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ) |
| 31 |
1 30
|
mp1i |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ) |
| 32 |
|
intmin |
⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On → ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 33 |
6 32
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) = ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ) |
| 35 |
29 31 34
|
3sstr4d |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 36 |
24 35
|
sstrd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 37 |
|
rankelb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 38 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
| 39 |
2 38
|
onsucssi |
⊢ ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 40 |
37 39
|
imbitrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) ) |
| 41 |
40
|
ralrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 42 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 43 |
41 42
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 44 |
36 43
|
eqssd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |