Metamath Proof Explorer


Theorem rankval4b

Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. This variant of rankval4 does not use Regularity, and so requires the assumption that A is in the range of R1 . (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion rankval4b ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = 𝑥𝐴 suc ( rank ‘ 𝑥 ) )

Proof

Step Hyp Ref Expression
1 r1wf ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ( 𝑅1 “ On )
2 rankon ( rank ‘ 𝑥 ) ∈ On
3 2 onsuci suc ( rank ‘ 𝑥 ) ∈ On
4 3 rgenw 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On
5 iunon ( ( 𝐴 ( 𝑅1 “ On ) ∧ ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On )
6 4 5 mpan2 ( 𝐴 ( 𝑅1 “ On ) → 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On )
7 r1ord3 ( ( suc ( rank ‘ 𝑥 ) ∈ On ∧ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ 𝑥𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
8 3 6 7 sylancr ( 𝐴 ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ 𝑥𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
9 ssiun2 ( 𝑥𝐴 → suc ( rank ‘ 𝑥 ) ⊆ 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
10 8 9 impel ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝑥𝐴 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) )
11 elwf ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝑥𝐴 ) → 𝑥 ( 𝑅1 “ On ) )
12 rankidb ( 𝑥 ( 𝑅1 “ On ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) )
13 11 12 syl ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) )
14 10 13 sseldd ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) )
15 14 ex ( 𝐴 ( 𝑅1 “ On ) → ( 𝑥𝐴𝑥 ∈ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
16 15 alrimiv ( 𝐴 ( 𝑅1 “ On ) → ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
17 nfcv 𝑥 𝐴
18 nfcv 𝑥 𝑅1
19 nfiu1 𝑥 𝑥𝐴 suc ( rank ‘ 𝑥 )
20 18 19 nffv 𝑥 ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
21 17 20 dfssf ( 𝐴 ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
22 16 21 sylibr ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) )
23 rankssb ( ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ( 𝑅1 “ On ) → ( 𝐴 ⊆ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) ) )
24 1 22 23 mpsyl ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) )
25 r1ord3 ( ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) ) )
26 6 25 sylan ( ( 𝐴 ( 𝑅1 “ On ) ∧ 𝑦 ∈ On ) → ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) ) )
27 26 ss2rabdv ( 𝐴 ( 𝑅1 “ On ) → { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } )
28 intss ( { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } → { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } ⊆ { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } )
29 27 28 syl ( 𝐴 ( 𝑅1 “ On ) → { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } ⊆ { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } )
30 rankval2b ( ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ∈ ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) = { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } )
31 1 30 mp1i ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) = { 𝑦 ∈ On ∣ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1𝑦 ) } )
32 intmin ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ∈ On → { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
33 6 32 syl ( 𝐴 ( 𝑅1 “ On ) → { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
34 33 eqcomd ( 𝐴 ( 𝑅1 “ On ) → 𝑥𝐴 suc ( rank ‘ 𝑥 ) = { 𝑦 ∈ On ∣ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } )
35 29 31 34 3sstr4d ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ ( 𝑅1 𝑥𝐴 suc ( rank ‘ 𝑥 ) ) ) ⊆ 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
36 24 35 sstrd ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ⊆ 𝑥𝐴 suc ( rank ‘ 𝑥 ) )
37 rankelb ( 𝐴 ( 𝑅1 “ On ) → ( 𝑥𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) )
38 rankon ( rank ‘ 𝐴 ) ∈ On
39 2 38 onsucssi ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
40 37 39 imbitrdi ( 𝐴 ( 𝑅1 “ On ) → ( 𝑥𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) )
41 40 ralrimiv ( 𝐴 ( 𝑅1 “ On ) → ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
42 iunss ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
43 41 42 sylibr ( 𝐴 ( 𝑅1 “ On ) → 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
44 36 43 eqssd ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = 𝑥𝐴 suc ( rank ‘ 𝑥 ) )