| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ V |
| 2 |
1
|
pwid |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) |
| 3 |
|
r1suc |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1 ‘ 𝐴 ) ) |
| 4 |
2 3
|
eleqtrrid |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) ) |
| 5 |
|
r1elwf |
⊢ ( ( 𝑅1 ‘ 𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 7 |
|
onwf |
⊢ On ⊆ ∪ ( 𝑅1 “ On ) |
| 8 |
|
r1fnon |
⊢ 𝑅1 Fn On |
| 9 |
8
|
fndmi |
⊢ dom 𝑅1 = On |
| 10 |
9
|
eleq2i |
⊢ ( 𝐴 ∈ dom 𝑅1 ↔ 𝐴 ∈ On ) |
| 11 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝑅1 → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 12 |
10 11
|
sylnbir |
⊢ ( ¬ 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) = ∅ ) |
| 13 |
|
0elon |
⊢ ∅ ∈ On |
| 14 |
12 13
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) ∈ On ) |
| 15 |
7 14
|
sselid |
⊢ ( ¬ 𝐴 ∈ On → ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 16 |
6 15
|
pm2.61i |
⊢ ( 𝑅1 ‘ 𝐴 ) ∈ ∪ ( 𝑅1 “ On ) |