Metamath Proof Explorer


Theorem r1wf

Description: Each stage in the cumulative hierarchy is well-founded. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion r1wf ( 𝑅1𝐴 ) ∈ ( 𝑅1 “ On )

Proof

Step Hyp Ref Expression
1 fvex ( 𝑅1𝐴 ) ∈ V
2 1 pwid ( 𝑅1𝐴 ) ∈ 𝒫 ( 𝑅1𝐴 )
3 r1suc ( 𝐴 ∈ On → ( 𝑅1 ‘ suc 𝐴 ) = 𝒫 ( 𝑅1𝐴 ) )
4 2 3 eleqtrrid ( 𝐴 ∈ On → ( 𝑅1𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) )
5 r1elwf ( ( 𝑅1𝐴 ) ∈ ( 𝑅1 ‘ suc 𝐴 ) → ( 𝑅1𝐴 ) ∈ ( 𝑅1 “ On ) )
6 4 5 syl ( 𝐴 ∈ On → ( 𝑅1𝐴 ) ∈ ( 𝑅1 “ On ) )
7 onwf On ⊆ ( 𝑅1 “ On )
8 r1fnon 𝑅1 Fn On
9 8 fndmi dom 𝑅1 = On
10 9 eleq2i ( 𝐴 ∈ dom 𝑅1𝐴 ∈ On )
11 ndmfv ( ¬ 𝐴 ∈ dom 𝑅1 → ( 𝑅1𝐴 ) = ∅ )
12 10 11 sylnbir ( ¬ 𝐴 ∈ On → ( 𝑅1𝐴 ) = ∅ )
13 0elon ∅ ∈ On
14 12 13 eqeltrdi ( ¬ 𝐴 ∈ On → ( 𝑅1𝐴 ) ∈ On )
15 7 14 sselid ( ¬ 𝐴 ∈ On → ( 𝑅1𝐴 ) ∈ ( 𝑅1 “ On ) )
16 6 15 pm2.61i ( 𝑅1𝐴 ) ∈ ( 𝑅1 “ On )