| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 2 |
1
|
pwid |
|- ( R1 ` A ) e. ~P ( R1 ` A ) |
| 3 |
|
r1suc |
|- ( A e. On -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 4 |
2 3
|
eleqtrrid |
|- ( A e. On -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 5 |
|
r1elwf |
|- ( ( R1 ` A ) e. ( R1 ` suc A ) -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 6 |
4 5
|
syl |
|- ( A e. On -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 7 |
|
onwf |
|- On C_ U. ( R1 " On ) |
| 8 |
|
r1fnon |
|- R1 Fn On |
| 9 |
8
|
fndmi |
|- dom R1 = On |
| 10 |
9
|
eleq2i |
|- ( A e. dom R1 <-> A e. On ) |
| 11 |
|
ndmfv |
|- ( -. A e. dom R1 -> ( R1 ` A ) = (/) ) |
| 12 |
10 11
|
sylnbir |
|- ( -. A e. On -> ( R1 ` A ) = (/) ) |
| 13 |
|
0elon |
|- (/) e. On |
| 14 |
12 13
|
eqeltrdi |
|- ( -. A e. On -> ( R1 ` A ) e. On ) |
| 15 |
7 14
|
sselid |
|- ( -. A e. On -> ( R1 ` A ) e. U. ( R1 " On ) ) |
| 16 |
6 15
|
pm2.61i |
|- ( R1 ` A ) e. U. ( R1 " On ) |