Metamath Proof Explorer


Theorem r1wf

Description: Each stage in the cumulative hierarchy is well-founded. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion r1wf R1 A R1 On

Proof

Step Hyp Ref Expression
1 fvex R1 A V
2 1 pwid R1 A 𝒫 R1 A
3 r1suc A On R1 suc A = 𝒫 R1 A
4 2 3 eleqtrrid A On R1 A R1 suc A
5 r1elwf R1 A R1 suc A R1 A R1 On
6 4 5 syl A On R1 A R1 On
7 onwf On R1 On
8 r1fnon R1 Fn On
9 8 fndmi dom R1 = On
10 9 eleq2i A dom R1 A On
11 ndmfv ¬ A dom R1 R1 A =
12 10 11 sylnbir ¬ A On R1 A =
13 0elon On
14 12 13 eqeltrdi ¬ A On R1 A On
15 7 14 sselid ¬ A On R1 A R1 On
16 6 15 pm2.61i R1 A R1 On