| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankelb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
| 3 |
|
limord |
⊢ ( Lim 𝐵 → Ord 𝐵 ) |
| 4 |
|
ordtr1 |
⊢ ( Ord 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 5 |
3 4
|
syl |
⊢ ( Lim 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 7 |
2 6
|
syland |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 8 |
7
|
expcomd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
| 9 |
8
|
ralrimdv |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 10 |
|
rankfilimbi |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 11 |
10
|
3impb |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 12 |
11
|
3com23 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ Lim 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 13 |
12
|
3expia |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ Lim 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 14 |
13
|
3impa |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 15 |
9 14
|
impbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |