Metamath Proof Explorer


Theorem rankfilimb

Description: The rank of a finite well-founded set is less than a limit ordinal iff the ranks of all of its elements are less than that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026)

Ref Expression
Assertion rankfilimb ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rankelb ( 𝐴 ( 𝑅1 “ On ) → ( 𝑥𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) )
2 1 3ad2ant2 ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( 𝑥𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) )
3 limord ( Lim 𝐵 → Ord 𝐵 )
4 ordtr1 ( Ord 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
5 3 4 syl ( Lim 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
6 5 3ad2ant3 ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
7 2 6 syland ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( 𝑥𝐴 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
8 7 expcomd ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → ( 𝑥𝐴 → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) )
9 8 ralrimdv ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
10 rankfilimbi ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 )
11 10 3impb ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ) ∧ ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 )
12 11 3com23 ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ) ∧ Lim 𝐵 ∧ ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 )
13 12 3expia ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ) ∧ Lim 𝐵 ) → ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
14 13 3impa ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 → ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
15 9 14 impbid ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) )