Metamath Proof Explorer


Theorem rankfilimb

Description: The rank of a finite well-founded set is less than a limit ordinal iff the ranks of all of its elements are less than that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026)

Ref Expression
Assertion rankfilimb A Fin A R1 On Lim B rank A B x A rank x B

Proof

Step Hyp Ref Expression
1 rankelb A R1 On x A rank x rank A
2 1 3ad2ant2 A Fin A R1 On Lim B x A rank x rank A
3 limord Lim B Ord B
4 ordtr1 Ord B rank x rank A rank A B rank x B
5 3 4 syl Lim B rank x rank A rank A B rank x B
6 5 3ad2ant3 A Fin A R1 On Lim B rank x rank A rank A B rank x B
7 2 6 syland A Fin A R1 On Lim B x A rank A B rank x B
8 7 expcomd A Fin A R1 On Lim B rank A B x A rank x B
9 8 ralrimdv A Fin A R1 On Lim B rank A B x A rank x B
10 rankfilimbi A Fin A R1 On x A rank x B Lim B rank A B
11 10 3impb A Fin A R1 On x A rank x B Lim B rank A B
12 11 3com23 A Fin A R1 On Lim B x A rank x B rank A B
13 12 3expia A Fin A R1 On Lim B x A rank x B rank A B
14 13 3impa A Fin A R1 On Lim B x A rank x B rank A B
15 9 14 impbid A Fin A R1 On Lim B rank A B x A rank x B