Metamath Proof Explorer


Theorem fissorduni

Description: The union (supremum) of a finite set of ordinals less than a nonzero ordinal class is an element of that ordinal class. (Contributed by BTernaryTau, 15-Jan-2026)

Ref Expression
Assertion fissorduni ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ord0eln0 ( Ord 𝐵 → ( ∅ ∈ 𝐵𝐵 ≠ ∅ ) )
2 1 biimpar ( ( Ord 𝐵𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 )
3 uni0 ∅ = ∅
4 3 eleq1i ( ∅ ∈ 𝐵 ↔ ∅ ∈ 𝐵 )
5 4 biimpri ( ∅ ∈ 𝐵 ∅ ∈ 𝐵 )
6 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
7 6 eleq1d ( 𝐴 = ∅ → ( 𝐴𝐵 ∅ ∈ 𝐵 ) )
8 5 7 syl5ibrcom ( ∅ ∈ 𝐵 → ( 𝐴 = ∅ → 𝐴𝐵 ) )
9 2 8 syl ( ( Ord 𝐵𝐵 ≠ ∅ ) → ( 𝐴 = ∅ → 𝐴𝐵 ) )
10 9 3ad2ant3 ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → ( 𝐴 = ∅ → 𝐴𝐵 ) )
11 ordsson ( Ord 𝐵𝐵 ⊆ On )
12 sstr ( ( 𝐴𝐵𝐵 ⊆ On ) → 𝐴 ⊆ On )
13 11 12 sylan2 ( ( 𝐴𝐵 ∧ Ord 𝐵 ) → 𝐴 ⊆ On )
14 13 adantrr ( ( 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → 𝐴 ⊆ On )
15 14 3adant1 ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → 𝐴 ⊆ On )
16 15 adantr ( ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ On )
17 simpl1 ( ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin )
18 simpr ( ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
19 ordunifi ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
20 16 17 18 19 syl3anc ( ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴𝐴 )
21 20 ex ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → ( 𝐴 ≠ ∅ → 𝐴𝐴 ) )
22 ssel ( 𝐴𝐵 → ( 𝐴𝐴 𝐴𝐵 ) )
23 22 3ad2ant2 ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → ( 𝐴𝐴 𝐴𝐵 ) )
24 21 23 syld ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → ( 𝐴 ≠ ∅ → 𝐴𝐵 ) )
25 10 24 pm2.61dne ( ( 𝐴 ∈ Fin ∧ 𝐴𝐵 ∧ ( Ord 𝐵𝐵 ≠ ∅ ) ) → 𝐴𝐵 )