| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ord0eln0 |
⊢ ( Ord 𝐵 → ( ∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 2 |
1
|
biimpar |
⊢ ( ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) → ∅ ∈ 𝐵 ) |
| 3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 4 |
3
|
eleq1i |
⊢ ( ∪ ∅ ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) |
| 5 |
4
|
biimpri |
⊢ ( ∅ ∈ 𝐵 → ∪ ∅ ∈ 𝐵 ) |
| 6 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
| 7 |
6
|
eleq1d |
⊢ ( 𝐴 = ∅ → ( ∪ 𝐴 ∈ 𝐵 ↔ ∪ ∅ ∈ 𝐵 ) ) |
| 8 |
5 7
|
syl5ibrcom |
⊢ ( ∅ ∈ 𝐵 → ( 𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵 ) ) |
| 9 |
2 8
|
syl |
⊢ ( ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) → ( 𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵 ) ) |
| 10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 = ∅ → ∪ 𝐴 ∈ 𝐵 ) ) |
| 11 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
| 12 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ On ) → 𝐴 ⊆ On ) |
| 13 |
11 12
|
sylan2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Ord 𝐵 ) → 𝐴 ⊆ On ) |
| 14 |
13
|
adantrr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → 𝐴 ⊆ On ) |
| 15 |
14
|
3adant1 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → 𝐴 ⊆ On ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ On ) |
| 17 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 19 |
|
ordunifi |
⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) ∧ 𝐴 ≠ ∅ ) → ∪ 𝐴 ∈ 𝐴 ) |
| 21 |
20
|
ex |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐴 ) ) |
| 22 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ 𝐵 ) ) |
| 23 |
22
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ 𝐵 ) ) |
| 24 |
21 23
|
syld |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ≠ ∅ → ∪ 𝐴 ∈ 𝐵 ) ) |
| 25 |
10 24
|
pm2.61dne |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ) ) → ∪ 𝐴 ∈ 𝐵 ) |