Metamath Proof Explorer


Theorem fissorduni

Description: The union (supremum) of a finite set of ordinals less than a nonzero ordinal class is an element of that ordinal class. (Contributed by BTernaryTau, 15-Jan-2026)

Ref Expression
Assertion fissorduni A Fin A B Ord B B A B

Proof

Step Hyp Ref Expression
1 ord0eln0 Ord B B B
2 1 biimpar Ord B B B
3 uni0 =
4 3 eleq1i B B
5 4 biimpri B B
6 unieq A = A =
7 6 eleq1d A = A B B
8 5 7 syl5ibrcom B A = A B
9 2 8 syl Ord B B A = A B
10 9 3ad2ant3 A Fin A B Ord B B A = A B
11 ordsson Ord B B On
12 sstr A B B On A On
13 11 12 sylan2 A B Ord B A On
14 13 adantrr A B Ord B B A On
15 14 3adant1 A Fin A B Ord B B A On
16 15 adantr A Fin A B Ord B B A A On
17 simpl1 A Fin A B Ord B B A A Fin
18 simpr A Fin A B Ord B B A A
19 ordunifi A On A Fin A A A
20 16 17 18 19 syl3anc A Fin A B Ord B B A A A
21 20 ex A Fin A B Ord B B A A A
22 ssel A B A A A B
23 22 3ad2ant2 A Fin A B Ord B B A A A B
24 21 23 syld A Fin A B Ord B B A A B
25 10 24 pm2.61dne A Fin A B Ord B B A B