| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ord0eln0 |
|- ( Ord B -> ( (/) e. B <-> B =/= (/) ) ) |
| 2 |
1
|
biimpar |
|- ( ( Ord B /\ B =/= (/) ) -> (/) e. B ) |
| 3 |
|
uni0 |
|- U. (/) = (/) |
| 4 |
3
|
eleq1i |
|- ( U. (/) e. B <-> (/) e. B ) |
| 5 |
4
|
biimpri |
|- ( (/) e. B -> U. (/) e. B ) |
| 6 |
|
unieq |
|- ( A = (/) -> U. A = U. (/) ) |
| 7 |
6
|
eleq1d |
|- ( A = (/) -> ( U. A e. B <-> U. (/) e. B ) ) |
| 8 |
5 7
|
syl5ibrcom |
|- ( (/) e. B -> ( A = (/) -> U. A e. B ) ) |
| 9 |
2 8
|
syl |
|- ( ( Ord B /\ B =/= (/) ) -> ( A = (/) -> U. A e. B ) ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> ( A = (/) -> U. A e. B ) ) |
| 11 |
|
ordsson |
|- ( Ord B -> B C_ On ) |
| 12 |
|
sstr |
|- ( ( A C_ B /\ B C_ On ) -> A C_ On ) |
| 13 |
11 12
|
sylan2 |
|- ( ( A C_ B /\ Ord B ) -> A C_ On ) |
| 14 |
13
|
adantrr |
|- ( ( A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> A C_ On ) |
| 15 |
14
|
3adant1 |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> A C_ On ) |
| 16 |
15
|
adantr |
|- ( ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) /\ A =/= (/) ) -> A C_ On ) |
| 17 |
|
simpl1 |
|- ( ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) /\ A =/= (/) ) -> A e. Fin ) |
| 18 |
|
simpr |
|- ( ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) /\ A =/= (/) ) -> A =/= (/) ) |
| 19 |
|
ordunifi |
|- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U. A e. A ) |
| 20 |
16 17 18 19
|
syl3anc |
|- ( ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) /\ A =/= (/) ) -> U. A e. A ) |
| 21 |
20
|
ex |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> ( A =/= (/) -> U. A e. A ) ) |
| 22 |
|
ssel |
|- ( A C_ B -> ( U. A e. A -> U. A e. B ) ) |
| 23 |
22
|
3ad2ant2 |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> ( U. A e. A -> U. A e. B ) ) |
| 24 |
21 23
|
syld |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> ( A =/= (/) -> U. A e. B ) ) |
| 25 |
10 24
|
pm2.61dne |
|- ( ( A e. Fin /\ A C_ B /\ ( Ord B /\ B =/= (/) ) ) -> U. A e. B ) |