Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | fiprc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex | |
|
2 | snfi | |
|
3 | eleq1 | |
|
4 | 2 3 | mpbiri | |
5 | 4 | exlimiv | |
6 | 5 | abssi | |
7 | ssexg | |
|
8 | 6 7 | mpan | |
9 | 8 | con3i | |
10 | df-nel | |
|
11 | df-nel | |
|
12 | 9 10 11 | 3imtr4i | |
13 | 1 12 | ax-mp | |