Metamath Proof Explorer


Theorem fiprc

Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008)

Ref Expression
Assertion fiprc FinV

Proof

Step Hyp Ref Expression
1 snnex x|yx=yV
2 snfi yFin
3 eleq1 x=yxFinyFin
4 2 3 mpbiri x=yxFin
5 4 exlimiv yx=yxFin
6 5 abssi x|yx=yFin
7 ssexg x|yx=yFinFinVx|yx=yV
8 6 7 mpan FinVx|yx=yV
9 8 con3i ¬x|yx=yV¬FinV
10 df-nel x|yx=yV¬x|yx=yV
11 df-nel FinV¬FinV
12 9 10 11 3imtr4i x|yx=yVFinV
13 1 12 ax-mp FinV