Metamath Proof Explorer


Theorem fliftel

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftel φCFDxXC=AD=B

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 df-br CFDCDF
5 1 eleq2i CDFCDranxXAB
6 eqid xXAB=xXAB
7 opex ABV
8 6 7 elrnmpti CDranxXABxXCD=AB
9 4 5 8 3bitri CFDxXCD=AB
10 opthg2 ARBSCD=ABC=AD=B
11 2 3 10 syl2anc φxXCD=ABC=AD=B
12 11 rexbidva φxXCD=ABxXC=AD=B
13 9 12 bitrid φCFDxXC=AD=B