Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fliftel
Next ⟩
fliftel1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fliftel
Description:
Elementhood in the relation
F
.
(Contributed by
Mario Carneiro
, 23-Dec-2016)
Ref
Expression
Hypotheses
flift.1
⊢
F
=
ran
⁡
x
∈
X
⟼
A
B
flift.2
⊢
φ
∧
x
∈
X
→
A
∈
R
flift.3
⊢
φ
∧
x
∈
X
→
B
∈
S
Assertion
fliftel
⊢
φ
→
C
F
D
↔
∃
x
∈
X
C
=
A
∧
D
=
B
Proof
Step
Hyp
Ref
Expression
1
flift.1
⊢
F
=
ran
⁡
x
∈
X
⟼
A
B
2
flift.2
⊢
φ
∧
x
∈
X
→
A
∈
R
3
flift.3
⊢
φ
∧
x
∈
X
→
B
∈
S
4
df-br
⊢
C
F
D
↔
C
D
∈
F
5
1
eleq2i
⊢
C
D
∈
F
↔
C
D
∈
ran
⁡
x
∈
X
⟼
A
B
6
eqid
⊢
x
∈
X
⟼
A
B
=
x
∈
X
⟼
A
B
7
opex
⊢
A
B
∈
V
8
6
7
elrnmpti
⊢
C
D
∈
ran
⁡
x
∈
X
⟼
A
B
↔
∃
x
∈
X
C
D
=
A
B
9
4
5
8
3bitri
⊢
C
F
D
↔
∃
x
∈
X
C
D
=
A
B
10
opthg2
⊢
A
∈
R
∧
B
∈
S
→
C
D
=
A
B
↔
C
=
A
∧
D
=
B
11
2
3
10
syl2anc
⊢
φ
∧
x
∈
X
→
C
D
=
A
B
↔
C
=
A
∧
D
=
B
12
11
rexbidva
⊢
φ
→
∃
x
∈
X
C
D
=
A
B
↔
∃
x
∈
X
C
=
A
∧
D
=
B
13
9
12
bitrid
⊢
φ
→
C
F
D
↔
∃
x
∈
X
C
=
A
∧
D
=
B