Metamath Proof Explorer


Theorem fliftrel

Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1 F=ranxXAB
flift.2 φxXAR
flift.3 φxXBS
Assertion fliftrel φFR×S

Proof

Step Hyp Ref Expression
1 flift.1 F=ranxXAB
2 flift.2 φxXAR
3 flift.3 φxXBS
4 2 3 opelxpd φxXABR×S
5 4 fmpttd φxXAB:XR×S
6 5 frnd φranxXABR×S
7 1 6 eqsstrid φFR×S