Metamath Proof Explorer


Theorem fmptd

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Hypotheses fmptd.1 φ x A B C
fmptd.2 F = x A B
Assertion fmptd φ F : A C

Proof

Step Hyp Ref Expression
1 fmptd.1 φ x A B C
2 fmptd.2 F = x A B
3 1 ralrimiva φ x A B C
4 2 fmpt x A B C F : A C
5 3 4 sylib φ F : A C