Metamath Proof Explorer


Theorem fmtno0

Description: The 0 th Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno0 FermatNo 0 = 3

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 fmtno 0 0 FermatNo 0 = 2 2 0 + 1
3 1 2 ax-mp FermatNo 0 = 2 2 0 + 1
4 2cn 2
5 exp0 2 2 0 = 1
6 4 5 ax-mp 2 0 = 1
7 6 oveq2i 2 2 0 = 2 1
8 7 oveq1i 2 2 0 + 1 = 2 1 + 1
9 exp1 2 2 1 = 2
10 4 9 ax-mp 2 1 = 2
11 10 oveq1i 2 1 + 1 = 2 + 1
12 2p1e3 2 + 1 = 3
13 8 11 12 3eqtri 2 2 0 + 1 = 3
14 3 13 eqtri FermatNo 0 = 3