Metamath Proof Explorer


Theorem fn0

Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion fn0 FFnF=

Proof

Step Hyp Ref Expression
1 fnrel FFnRelF
2 fndm FFndomF=
3 reldm0 RelFF=domF=
4 3 biimpar RelFdomF=F=
5 1 2 4 syl2anc FFnF=
6 fun0 Fun
7 dm0 dom=
8 df-fn FnFundom=
9 6 7 8 mpbir2an Fn
10 fneq1 F=FFnFn
11 9 10 mpbiri F=FFn
12 5 11 impbii FFnF=