Metamath Proof Explorer


Theorem fnimadisj

Description: A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007)

Ref Expression
Assertion fnimadisj FFnAAC=FC=

Proof

Step Hyp Ref Expression
1 fndm FFnAdomF=A
2 1 ineq1d FFnAdomFC=AC
3 2 eqeq1d FFnAdomFC=AC=
4 3 biimpar FFnAAC=domFC=
5 imadisj FC=domFC=
6 4 5 sylibr FFnAAC=FC=