Metamath Proof Explorer


Theorem fnbr

Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004)

Ref Expression
Assertion fnbr FFnABFCBA

Proof

Step Hyp Ref Expression
1 fnrel FFnARelF
2 releldm RelFBFCBdomF
3 1 2 sylan FFnABFCBdomF
4 fndm FFnAdomF=A
5 4 eleq2d FFnABdomFBA
6 5 biimpa FFnABdomFBA
7 3 6 syldan FFnABFCBA