Metamath Proof Explorer


Theorem fneqeql2

Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Assertion fneqeql2 FFnAGFnAF=GAdomFG

Proof

Step Hyp Ref Expression
1 fneqeql FFnAGFnAF=GdomFG=A
2 eqss domFG=AdomFGAAdomFG
3 inss1 FGF
4 dmss FGFdomFGdomF
5 3 4 ax-mp domFGdomF
6 fndm FFnAdomF=A
7 6 adantr FFnAGFnAdomF=A
8 5 7 sseqtrid FFnAGFnAdomFGA
9 8 biantrurd FFnAGFnAAdomFGdomFGAAdomFG
10 2 9 bitr4id FFnAGFnAdomFG=AAdomFG
11 1 10 bitrd FFnAGFnAF=GAdomFG