Metamath Proof Explorer


Theorem fneuni

Description: If B is finer than A , every element of A is a union of elements of B . (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Assertion fneuni A Fne B S A x x B S = x

Proof

Step Hyp Ref Expression
1 fnetg A Fne B A topGen B
2 1 sselda A Fne B S A S topGen B
3 elfvdm S topGen B B dom topGen
4 eltg3 B dom topGen S topGen B x x B S = x
5 3 4 syl S topGen B S topGen B x x B S = x
6 5 ibi S topGen B x x B S = x
7 2 6 syl A Fne B S A x x B S = x