Metamath Proof Explorer


Theorem fneuni

Description: If B is finer than A , every element of A is a union of elements of B . (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Assertion fneuni AFneBSAxxBS=x

Proof

Step Hyp Ref Expression
1 fnetg AFneBAtopGenB
2 1 sselda AFneBSAStopGenB
3 elfvdm StopGenBBdomtopGen
4 eltg3 BdomtopGenStopGenBxxBS=x
5 3 4 syl StopGenBStopGenBxxBS=x
6 5 ibi StopGenBxxBS=x
7 2 6 syl AFneBSAxxBS=x