Metamath Proof Explorer


Theorem fneint

Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Assertion fneint AFneBxB|PxxA|Px

Proof

Step Hyp Ref Expression
1 eleq2w x=yPxPy
2 1 elrab yxA|PxyAPy
3 fnessex AFneByAPyzBPzzy
4 3 3expb AFneByAPyzBPzzy
5 eleq2w x=zPxPz
6 5 intminss zBPzxB|Pxz
7 sstr xB|PxzzyxB|Pxy
8 6 7 sylan zBPzzyxB|Pxy
9 8 expl zBPzzyxB|Pxy
10 9 rexlimiv zBPzzyxB|Pxy
11 4 10 syl AFneByAPyxB|Pxy
12 11 ex AFneByAPyxB|Pxy
13 2 12 biimtrid AFneByxA|PxxB|Pxy
14 13 ralrimiv AFneByxA|PxxB|Pxy
15 ssint xB|PxxA|PxyxA|PxxB|Pxy
16 14 15 sylibr AFneBxB|PxxA|Px