Metamath Proof Explorer


Theorem fneint

Description: If a cover is finer than another, every point can be approached more closely by intersections. (Contributed by Jeff Hankins, 11-Oct-2009)

Ref Expression
Assertion fneint ( 𝐴 Fne 𝐵 { 𝑥𝐵𝑃𝑥 } ⊆ { 𝑥𝐴𝑃𝑥 } )

Proof

Step Hyp Ref Expression
1 eleq2w ( 𝑥 = 𝑦 → ( 𝑃𝑥𝑃𝑦 ) )
2 1 elrab ( 𝑦 ∈ { 𝑥𝐴𝑃𝑥 } ↔ ( 𝑦𝐴𝑃𝑦 ) )
3 fnessex ( ( 𝐴 Fne 𝐵𝑦𝐴𝑃𝑦 ) → ∃ 𝑧𝐵 ( 𝑃𝑧𝑧𝑦 ) )
4 3 3expb ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦𝐴𝑃𝑦 ) ) → ∃ 𝑧𝐵 ( 𝑃𝑧𝑧𝑦 ) )
5 eleq2w ( 𝑥 = 𝑧 → ( 𝑃𝑥𝑃𝑧 ) )
6 5 intminss ( ( 𝑧𝐵𝑃𝑧 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑧 )
7 sstr ( ( { 𝑥𝐵𝑃𝑥 } ⊆ 𝑧𝑧𝑦 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
8 6 7 sylan ( ( ( 𝑧𝐵𝑃𝑧 ) ∧ 𝑧𝑦 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
9 8 expl ( 𝑧𝐵 → ( ( 𝑃𝑧𝑧𝑦 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 ) )
10 9 rexlimiv ( ∃ 𝑧𝐵 ( 𝑃𝑧𝑧𝑦 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
11 4 10 syl ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦𝐴𝑃𝑦 ) ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
12 11 ex ( 𝐴 Fne 𝐵 → ( ( 𝑦𝐴𝑃𝑦 ) → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 ) )
13 2 12 syl5bi ( 𝐴 Fne 𝐵 → ( 𝑦 ∈ { 𝑥𝐴𝑃𝑥 } → { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 ) )
14 13 ralrimiv ( 𝐴 Fne 𝐵 → ∀ 𝑦 ∈ { 𝑥𝐴𝑃𝑥 } { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
15 ssint ( { 𝑥𝐵𝑃𝑥 } ⊆ { 𝑥𝐴𝑃𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥𝐴𝑃𝑥 } { 𝑥𝐵𝑃𝑥 } ⊆ 𝑦 )
16 14 15 sylibr ( 𝐴 Fne 𝐵 { 𝑥𝐵𝑃𝑥 } ⊆ { 𝑥𝐴𝑃𝑥 } )