Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2w |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) |
2 |
1
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) |
3 |
|
fnessex |
⊢ ( ( 𝐴 Fne 𝐵 ∧ 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
4 |
3
|
3expb |
⊢ ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
5 |
|
eleq2w |
⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) |
6 |
5
|
intminss |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑧 ) |
7 |
|
sstr |
⊢ ( ( ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
8 |
6 7
|
sylan |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝑃 ∈ 𝑧 ) ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
9 |
8
|
expl |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
10 |
9
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑃 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
11 |
4 10
|
syl |
⊢ ( ( 𝐴 Fne 𝐵 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
12 |
11
|
ex |
⊢ ( 𝐴 Fne 𝐵 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑃 ∈ 𝑦 ) → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
13 |
2 12
|
syl5bi |
⊢ ( 𝐴 Fne 𝐵 → ( 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) ) |
14 |
13
|
ralrimiv |
⊢ ( 𝐴 Fne 𝐵 → ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
15 |
|
ssint |
⊢ ( ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ ∩ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ 𝑦 ) |
16 |
14 15
|
sylibr |
⊢ ( 𝐴 Fne 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝑃 ∈ 𝑥 } ⊆ ∩ { 𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥 } ) |