Metamath Proof Explorer


Theorem fnexd

Description: If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnexd.1 φFFnA
fnexd.2 φAV
Assertion fnexd φFV

Proof

Step Hyp Ref Expression
1 fnexd.1 φFFnA
2 fnexd.2 φAV
3 fnex FFnAAVFV
4 1 2 3 syl2anc φFV