Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnfun
Next ⟩
fnfund
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnfun
Description:
A function with domain is a function.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Assertion
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
Proof
Step
Hyp
Ref
Expression
1
df-fn
⊢
F
Fn
A
↔
Fun
⁡
F
∧
dom
⁡
F
=
A
2
1
simplbi
⊢
F
Fn
A
→
Fun
⁡
F