Metamath Proof Explorer


Theorem fninfp

Description: Express the class of fixed points of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fninfp FFnAdomFI=xA|Fx=x

Proof

Step Hyp Ref Expression
1 fnresdm FFnAFA=F
2 1 ineq1d FFnAFAI=FI
3 inres IFA=IFA
4 incom IF=FI
5 4 reseq1i IFA=FIA
6 3 5 eqtri IFA=FIA
7 incom FAI=IFA
8 inres FIA=FIA
9 6 7 8 3eqtr4i FAI=FIA
10 2 9 eqtr3di FFnAFI=FIA
11 10 dmeqd FFnAdomFI=domFIA
12 fnresi IAFnA
13 fndmin FFnAIAFnAdomFIA=xA|Fx=IAx
14 12 13 mpan2 FFnAdomFIA=xA|Fx=IAx
15 fvresi xAIAx=x
16 15 eqeq2d xAFx=IAxFx=x
17 16 rabbiia xA|Fx=IAx=xA|Fx=x
18 17 a1i FFnAxA|Fx=IAx=xA|Fx=x
19 11 14 18 3eqtrd FFnAdomFI=xA|Fx=x