Metamath Proof Explorer


Theorem fnopfvb

Description: Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995)

Ref Expression
Assertion fnopfvb FFnABAFB=CBCF

Proof

Step Hyp Ref Expression
1 fnbrfvb FFnABAFB=CBFC
2 df-br BFCBCF
3 1 2 bitrdi FFnABAFB=CBCF