Metamath Proof Explorer


Theorem fnovrn

Description: An operation's value belongs to its range. (Contributed by NM, 10-Feb-2007)

Ref Expression
Assertion fnovrn FFnA×BCADBCFDranF

Proof

Step Hyp Ref Expression
1 opelxpi CADBCDA×B
2 df-ov CFD=FCD
3 fnfvelrn FFnA×BCDA×BFCDranF
4 2 3 eqeltrid FFnA×BCDA×BCFDranF
5 1 4 sylan2 FFnA×BCADBCFDranF
6 5 3impb FFnA×BCADBCFDranF