Metamath Proof Explorer


Theorem fnprg

Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion fnprg AVBWCXDYABACBDFnAB

Proof

Step Hyp Ref Expression
1 funprg AVBWCXDYABFunACBD
2 dmpropg CXDYdomACBD=AB
3 2 3ad2ant2 AVBWCXDYABdomACBD=AB
4 df-fn ACBDFnABFunACBDdomACBD=AB
5 1 3 4 sylanbrc AVBWCXDYABACBDFnAB