Metamath Proof Explorer


Theorem fnssresb

Description: Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion fnssresb FFnAFBFnBBA

Proof

Step Hyp Ref Expression
1 df-fn FBFnBFunFBdomFB=B
2 fnfun FFnAFunF
3 2 funresd FFnAFunFB
4 3 biantrurd FFnAdomFB=BFunFBdomFB=B
5 ssdmres BdomFdomFB=B
6 fndm FFnAdomF=A
7 6 sseq2d FFnABdomFBA
8 5 7 bitr3id FFnAdomFB=BBA
9 4 8 bitr3d FFnAFunFBdomFB=BBA
10 1 9 bitrid FFnAFBFnBBA