Metamath Proof Explorer


Theorem fo1st

Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo1st 1st:VontoV

Proof

Step Hyp Ref Expression
1 vsnex xV
2 1 dmex domxV
3 2 uniex domxV
4 df-1st 1st=xVdomx
5 3 4 fnmpti 1stFnV
6 4 rnmpt ran1st=y|xVy=domx
7 vex yV
8 opex yyV
9 7 7 op1sta domyy=y
10 9 eqcomi y=domyy
11 sneq x=yyx=yy
12 11 dmeqd x=yydomx=domyy
13 12 unieqd x=yydomx=domyy
14 13 rspceeqv yyVy=domyyxVy=domx
15 8 10 14 mp2an xVy=domx
16 7 15 2th yVxVy=domx
17 16 eqabi V=y|xVy=domx
18 6 17 eqtr4i ran1st=V
19 df-fo 1st:VontoV1stFnVran1st=V
20 5 18 19 mpbir2an 1st:VontoV