Metamath Proof Explorer


Theorem fo2nd

Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fo2nd 2nd:VontoV

Proof

Step Hyp Ref Expression
1 vsnex xV
2 1 rnex ranxV
3 2 uniex ranxV
4 df-2nd 2nd=xVranx
5 3 4 fnmpti 2ndFnV
6 4 rnmpt ran2nd=y|xVy=ranx
7 vex yV
8 opex yyV
9 7 7 op2nda ranyy=y
10 9 eqcomi y=ranyy
11 sneq x=yyx=yy
12 11 rneqd x=yyranx=ranyy
13 12 unieqd x=yyranx=ranyy
14 13 rspceeqv yyVy=ranyyxVy=ranx
15 8 10 14 mp2an xVy=ranx
16 7 15 2th yVxVy=ranx
17 16 eqabi V=y|xVy=ranx
18 6 17 eqtr4i ran2nd=V
19 df-fo 2nd:VontoV2ndFnVran2nd=V
20 5 18 19 mpbir2an 2nd:VontoV