Metamath Proof Explorer


Theorem fourierdlem67

Description: G is a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem67.f φF:
fourierdlem67.x φX
fourierdlem67.y φY
fourierdlem67.w φW
fourierdlem67.h H=sππifs=00FX+sif0<sYWs
fourierdlem67.k K=sππifs=01s2sins2
fourierdlem67.u U=sππHsKs
fourierdlem67.n φN
fourierdlem67.s S=sππsinN+12s
fourierdlem67.g G=sππUsSs
Assertion fourierdlem67 φG:ππ

Proof

Step Hyp Ref Expression
1 fourierdlem67.f φF:
2 fourierdlem67.x φX
3 fourierdlem67.y φY
4 fourierdlem67.w φW
5 fourierdlem67.h H=sππifs=00FX+sif0<sYWs
6 fourierdlem67.k K=sππifs=01s2sins2
7 fourierdlem67.u U=sππHsKs
8 fourierdlem67.n φN
9 fourierdlem67.s S=sππsinN+12s
10 fourierdlem67.g G=sππUsSs
11 1 2 3 4 5 6 7 fourierdlem55 φU:ππ
12 11 ffvelcdmda φsππUs
13 9 fourierdlem5 NS:ππ
14 8 13 syl φS:ππ
15 14 ffvelcdmda φsππSs
16 12 15 remulcld φsππUsSs
17 16 10 fmptd φG:ππ