Metamath Proof Explorer


Theorem fourierdlem55

Description: U is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem55.f φF:
fourierdlem55.x φX
fourierdlem55.r φY
fourierdlem55.w φW
fourierdlem55.h H=sππifs=00FX+sif0<sYWs
fourierdlem55.k K=sππifs=01s2sins2
fourierdlem55.u U=sππHsKs
Assertion fourierdlem55 φU:ππ

Proof

Step Hyp Ref Expression
1 fourierdlem55.f φF:
2 fourierdlem55.x φX
3 fourierdlem55.r φY
4 fourierdlem55.w φW
5 fourierdlem55.h H=sππifs=00FX+sif0<sYWs
6 fourierdlem55.k K=sππifs=01s2sins2
7 fourierdlem55.u U=sππHsKs
8 1 2 3 4 5 fourierdlem9 φH:ππ
9 8 ffvelcdmda φsππHs
10 6 fourierdlem43 K:ππ
11 10 ffvelcdmi sππKs
12 11 adantl φsππKs
13 9 12 remulcld φsππHsKs
14 13 7 fmptd φU:ππ