Metamath Proof Explorer


Theorem fourierdlem43

Description: K is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis fourierdlem43.1 K=sππifs=01s2sins2
Assertion fourierdlem43 K:ππ

Proof

Step Hyp Ref Expression
1 fourierdlem43.1 K=sππifs=01s2sins2
2 1red sππs=01
3 pire π
4 3 a1i sπππ
5 4 renegcld sπππ
6 id sππsππ
7 eliccre ππsππs
8 5 4 6 7 syl3anc sππs
9 8 adantr sππ¬s=0s
10 2re 2
11 10 a1i sππ¬s=02
12 9 rehalfcld sππ¬s=0s2
13 12 resincld sππ¬s=0sins2
14 11 13 remulcld sππ¬s=02sins2
15 2cnd sππ¬s=02
16 13 recnd sππ¬s=0sins2
17 2ne0 20
18 17 a1i sππ¬s=020
19 0xr 0*
20 19 a1i sππ0<s0*
21 10 3 remulcli 2π
22 21 rexri 2π*
23 22 a1i sππ0<s2π*
24 8 adantr sππ0<ss
25 simpr sππ0<s0<s
26 21 a1i sππ2π
27 5 rexrd sπππ*
28 4 rexrd sπππ*
29 iccleub π*π*sππsπ
30 27 28 6 29 syl3anc sππsπ
31 pirp π+
32 2timesgt π+π<2π
33 31 32 ax-mp π<2π
34 33 a1i sπππ<2π
35 8 4 26 30 34 lelttrd sππs<2π
36 35 adantr sππ0<ss<2π
37 20 23 24 25 36 eliood sππ0<ss02π
38 sinaover2ne0 s02πsins20
39 37 38 syl sππ0<ssins20
40 39 adantlr sππ¬s=00<ssins20
41 8 ad2antrr sππ¬s=0¬0<ss
42 iccgelb π*π*sπππs
43 27 28 6 42 syl3anc sπππs
44 43 ad2antrr sππ¬s=0¬0<sπs
45 0red sππ¬s=0¬0<s0
46 neqne ¬s=0s0
47 46 ad2antlr sππ¬s=0¬0<ss0
48 simpr sππ¬s=0¬0<s¬0<s
49 41 45 47 48 lttri5d sππ¬s=0¬0<ss<0
50 5 ad2antrr sππ¬s=0¬0<sπ
51 elico2 π0*sπ0sπss<0
52 50 19 51 sylancl sππ¬s=0¬0<ssπ0sπss<0
53 41 44 49 52 mpbir3and sππ¬s=0¬0<ssπ0
54 3 renegcli π
55 elicore πsπ0s
56 54 55 mpan sπ0s
57 56 recnd sπ0s
58 2cnd sπ02
59 17 a1i sπ020
60 57 58 59 divnegd sπ0s2=s2
61 60 eqcomd sπ0s2=s2
62 61 fveq2d sπ0sins2=sins2
63 62 negeqd sπ0sins2=sins2
64 57 halfcld sπ0s2
65 sinneg s2sins2=sins2
66 64 65 syl sπ0sins2=sins2
67 66 negeqd sπ0sins2=sins2
68 64 sincld sπ0sins2
69 68 negnegd sπ0sins2=sins2
70 63 67 69 3eqtrd sπ0sins2=sins2
71 57 negcld sπ0s
72 71 halfcld sπ0s2
73 72 sincld sπ0sins2
74 19 a1i sπ00*
75 22 a1i sπ02π*
76 56 renegcld sπ0s
77 54 a1i sπ0π
78 77 rexrd sπ0π*
79 id sπ0sπ0
80 icoltub π*0*sπ0s<0
81 78 74 79 80 syl3anc sπ0s<0
82 56 lt0neg1d sπ0s<00<s
83 81 82 mpbid sπ00<s
84 3 a1i sπ0π
85 21 a1i sπ02π
86 icogelb π*0*sπ0πs
87 78 74 79 86 syl3anc sπ0πs
88 84 56 87 lenegcon1d sπ0sπ
89 33 a1i sπ0π<2π
90 76 84 85 88 89 lelttrd sπ0s<2π
91 74 75 76 83 90 eliood sπ0s02π
92 sinaover2ne0 s02πsins20
93 91 92 syl sπ0sins20
94 73 93 negne0d sπ0sins20
95 70 94 eqnetrrd sπ0sins20
96 53 95 syl sππ¬s=0¬0<ssins20
97 40 96 pm2.61dan sππ¬s=0sins20
98 15 16 18 97 mulne0d sππ¬s=02sins20
99 9 14 98 redivcld sππ¬s=0s2sins2
100 2 99 ifclda sππifs=01s2sins2
101 1 100 fmpti K:ππ