| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|
| 2 |
1
|
a1i |
|
| 3 |
|
2re |
|
| 4 |
|
pire |
|
| 5 |
3 4
|
remulcli |
|
| 6 |
5
|
rexri |
|
| 7 |
6
|
a1i |
|
| 8 |
4
|
renegcli |
|
| 9 |
8
|
a1i |
|
| 10 |
4
|
a1i |
|
| 11 |
|
id |
|
| 12 |
|
eliccre |
|
| 13 |
9 10 11 12
|
syl3anc |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
5
|
a1i |
|
| 17 |
9
|
rexrd |
|
| 18 |
10
|
rexrd |
|
| 19 |
|
iccleub |
|
| 20 |
17 18 11 19
|
syl3anc |
|
| 21 |
|
pirp |
|
| 22 |
|
2timesgt |
|
| 23 |
21 22
|
ax-mp |
|
| 24 |
23
|
a1i |
|
| 25 |
13 10 16 20 24
|
lelttrd |
|
| 26 |
25
|
adantr |
|
| 27 |
2 7 14 15 26
|
eliood |
|
| 28 |
27
|
adantlr |
|
| 29 |
|
sinaover2ne0 |
|
| 30 |
28 29
|
syl |
|
| 31 |
|
simpll |
|
| 32 |
31 13
|
syl |
|
| 33 |
|
0red |
|
| 34 |
|
simplr |
|
| 35 |
|
simpr |
|
| 36 |
32 33 34 35
|
lttri5d |
|
| 37 |
13
|
recnd |
|
| 38 |
37
|
halfcld |
|
| 39 |
|
sinneg |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
2cnd |
|
| 42 |
|
2ne0 |
|
| 43 |
42
|
a1i |
|
| 44 |
37 41 43
|
divnegd |
|
| 45 |
44
|
fveq2d |
|
| 46 |
40 45
|
eqtr3d |
|
| 47 |
46
|
adantr |
|
| 48 |
1
|
a1i |
|
| 49 |
6
|
a1i |
|
| 50 |
13
|
renegcld |
|
| 51 |
50
|
adantr |
|
| 52 |
|
simpr |
|
| 53 |
13
|
adantr |
|
| 54 |
53
|
lt0neg1d |
|
| 55 |
52 54
|
mpbid |
|
| 56 |
5
|
renegcli |
|
| 57 |
56
|
a1i |
|
| 58 |
8
|
a1i |
|
| 59 |
4 5
|
ltnegi |
|
| 60 |
23 59
|
mpbi |
|
| 61 |
60
|
a1i |
|
| 62 |
|
iccgelb |
|
| 63 |
17 18 11 62
|
syl3anc |
|
| 64 |
63
|
adantr |
|
| 65 |
57 58 53 61 64
|
ltletrd |
|
| 66 |
57 53
|
ltnegd |
|
| 67 |
65 66
|
mpbid |
|
| 68 |
16
|
recnd |
|
| 69 |
68
|
negnegd |
|
| 70 |
69
|
adantr |
|
| 71 |
67 70
|
breqtrd |
|
| 72 |
48 49 51 55 71
|
eliood |
|
| 73 |
|
sinaover2ne0 |
|
| 74 |
72 73
|
syl |
|
| 75 |
47 74
|
eqnetrd |
|
| 76 |
75
|
neneqd |
|
| 77 |
38
|
sincld |
|
| 78 |
77
|
adantr |
|
| 79 |
78
|
negeq0d |
|
| 80 |
76 79
|
mtbird |
|
| 81 |
80
|
neqned |
|
| 82 |
31 36 81
|
syl2anc |
|
| 83 |
30 82
|
pm2.61dan |
|