Metamath Proof Explorer


Theorem fourierdlem44

Description: A condition for having ( sin( A / 2 ) ) nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion fourierdlem44 A π π A 0 sin A 2 0

Proof

Step Hyp Ref Expression
1 0xr 0 *
2 1 a1i A π π 0 < A 0 *
3 2re 2
4 pire π
5 3 4 remulcli 2 π
6 5 rexri 2 π *
7 6 a1i A π π 0 < A 2 π *
8 4 renegcli π
9 8 a1i A π π π
10 4 a1i A π π π
11 id A π π A π π
12 eliccre π π A π π A
13 9 10 11 12 syl3anc A π π A
14 13 adantr A π π 0 < A A
15 simpr A π π 0 < A 0 < A
16 5 a1i A π π 2 π
17 9 rexrd A π π π *
18 10 rexrd A π π π *
19 iccleub π * π * A π π A π
20 17 18 11 19 syl3anc A π π A π
21 pirp π +
22 2timesgt π + π < 2 π
23 21 22 ax-mp π < 2 π
24 23 a1i A π π π < 2 π
25 13 10 16 20 24 lelttrd A π π A < 2 π
26 25 adantr A π π 0 < A A < 2 π
27 2 7 14 15 26 eliood A π π 0 < A A 0 2 π
28 27 adantlr A π π A 0 0 < A A 0 2 π
29 sinaover2ne0 A 0 2 π sin A 2 0
30 28 29 syl A π π A 0 0 < A sin A 2 0
31 simpll A π π A 0 ¬ 0 < A A π π
32 31 13 syl A π π A 0 ¬ 0 < A A
33 0red A π π A 0 ¬ 0 < A 0
34 simplr A π π A 0 ¬ 0 < A A 0
35 simpr A π π A 0 ¬ 0 < A ¬ 0 < A
36 32 33 34 35 lttri5d A π π A 0 ¬ 0 < A A < 0
37 13 recnd A π π A
38 37 halfcld A π π A 2
39 sinneg A 2 sin A 2 = sin A 2
40 38 39 syl A π π sin A 2 = sin A 2
41 2cnd A π π 2
42 2ne0 2 0
43 42 a1i A π π 2 0
44 37 41 43 divnegd A π π A 2 = A 2
45 44 fveq2d A π π sin A 2 = sin A 2
46 40 45 eqtr3d A π π sin A 2 = sin A 2
47 46 adantr A π π A < 0 sin A 2 = sin A 2
48 1 a1i A π π A < 0 0 *
49 6 a1i A π π A < 0 2 π *
50 13 renegcld A π π A
51 50 adantr A π π A < 0 A
52 simpr A π π A < 0 A < 0
53 13 adantr A π π A < 0 A
54 53 lt0neg1d A π π A < 0 A < 0 0 < A
55 52 54 mpbid A π π A < 0 0 < A
56 5 renegcli 2 π
57 56 a1i A π π A < 0 2 π
58 8 a1i A π π A < 0 π
59 4 5 ltnegi π < 2 π 2 π < π
60 23 59 mpbi 2 π < π
61 60 a1i A π π A < 0 2 π < π
62 iccgelb π * π * A π π π A
63 17 18 11 62 syl3anc A π π π A
64 63 adantr A π π A < 0 π A
65 57 58 53 61 64 ltletrd A π π A < 0 2 π < A
66 57 53 ltnegd A π π A < 0 2 π < A A < 2 π
67 65 66 mpbid A π π A < 0 A < 2 π
68 16 recnd A π π 2 π
69 68 negnegd A π π 2 π = 2 π
70 69 adantr A π π A < 0 2 π = 2 π
71 67 70 breqtrd A π π A < 0 A < 2 π
72 48 49 51 55 71 eliood A π π A < 0 A 0 2 π
73 sinaover2ne0 A 0 2 π sin A 2 0
74 72 73 syl A π π A < 0 sin A 2 0
75 47 74 eqnetrd A π π A < 0 sin A 2 0
76 75 neneqd A π π A < 0 ¬ sin A 2 = 0
77 38 sincld A π π sin A 2
78 77 adantr A π π A < 0 sin A 2
79 78 negeq0d A π π A < 0 sin A 2 = 0 sin A 2 = 0
80 76 79 mtbird A π π A < 0 ¬ sin A 2 = 0
81 80 neqned A π π A < 0 sin A 2 0
82 31 36 81 syl2anc A π π A 0 ¬ 0 < A sin A 2 0
83 30 82 pm2.61dan A π π A 0 sin A 2 0