| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|- 0 e. RR* |
| 2 |
1
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> 0 e. RR* ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
|
pire |
|- _pi e. RR |
| 5 |
3 4
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 6 |
5
|
rexri |
|- ( 2 x. _pi ) e. RR* |
| 7 |
6
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> ( 2 x. _pi ) e. RR* ) |
| 8 |
4
|
renegcli |
|- -u _pi e. RR |
| 9 |
8
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi e. RR ) |
| 10 |
4
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> _pi e. RR ) |
| 11 |
|
id |
|- ( A e. ( -u _pi [,] _pi ) -> A e. ( -u _pi [,] _pi ) ) |
| 12 |
|
eliccre |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ A e. ( -u _pi [,] _pi ) ) -> A e. RR ) |
| 13 |
9 10 11 12
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> A e. RR ) |
| 14 |
13
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A e. RR ) |
| 15 |
|
simpr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> 0 < A ) |
| 16 |
5
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> ( 2 x. _pi ) e. RR ) |
| 17 |
9
|
rexrd |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi e. RR* ) |
| 18 |
10
|
rexrd |
|- ( A e. ( -u _pi [,] _pi ) -> _pi e. RR* ) |
| 19 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. ( -u _pi [,] _pi ) ) -> A <_ _pi ) |
| 20 |
17 18 11 19
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> A <_ _pi ) |
| 21 |
|
pirp |
|- _pi e. RR+ |
| 22 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
| 23 |
21 22
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
| 24 |
23
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> _pi < ( 2 x. _pi ) ) |
| 25 |
13 10 16 20 24
|
lelttrd |
|- ( A e. ( -u _pi [,] _pi ) -> A < ( 2 x. _pi ) ) |
| 26 |
25
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A < ( 2 x. _pi ) ) |
| 27 |
2 7 14 15 26
|
eliood |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 28 |
27
|
adantlr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ 0 < A ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 29 |
|
sinaover2ne0 |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
| 30 |
28 29
|
syl |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ 0 < A ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
| 31 |
|
simpll |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A e. ( -u _pi [,] _pi ) ) |
| 32 |
31 13
|
syl |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A e. RR ) |
| 33 |
|
0red |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> 0 e. RR ) |
| 34 |
|
simplr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A =/= 0 ) |
| 35 |
|
simpr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> -. 0 < A ) |
| 36 |
32 33 34 35
|
lttri5d |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A < 0 ) |
| 37 |
13
|
recnd |
|- ( A e. ( -u _pi [,] _pi ) -> A e. CC ) |
| 38 |
37
|
halfcld |
|- ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. CC ) |
| 39 |
|
sinneg |
|- ( ( A / 2 ) e. CC -> ( sin ` -u ( A / 2 ) ) = -u ( sin ` ( A / 2 ) ) ) |
| 40 |
38 39
|
syl |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` -u ( A / 2 ) ) = -u ( sin ` ( A / 2 ) ) ) |
| 41 |
|
2cnd |
|- ( A e. ( -u _pi [,] _pi ) -> 2 e. CC ) |
| 42 |
|
2ne0 |
|- 2 =/= 0 |
| 43 |
42
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> 2 =/= 0 ) |
| 44 |
37 41 43
|
divnegd |
|- ( A e. ( -u _pi [,] _pi ) -> -u ( A / 2 ) = ( -u A / 2 ) ) |
| 45 |
44
|
fveq2d |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` -u ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
| 46 |
40 45
|
eqtr3d |
|- ( A e. ( -u _pi [,] _pi ) -> -u ( sin ` ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
| 47 |
46
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( sin ` ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
| 48 |
1
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> 0 e. RR* ) |
| 49 |
6
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( 2 x. _pi ) e. RR* ) |
| 50 |
13
|
renegcld |
|- ( A e. ( -u _pi [,] _pi ) -> -u A e. RR ) |
| 51 |
50
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A e. RR ) |
| 52 |
|
simpr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> A < 0 ) |
| 53 |
13
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> A e. RR ) |
| 54 |
53
|
lt0neg1d |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( A < 0 <-> 0 < -u A ) ) |
| 55 |
52 54
|
mpbid |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> 0 < -u A ) |
| 56 |
5
|
renegcli |
|- -u ( 2 x. _pi ) e. RR |
| 57 |
56
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) e. RR ) |
| 58 |
8
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u _pi e. RR ) |
| 59 |
4 5
|
ltnegi |
|- ( _pi < ( 2 x. _pi ) <-> -u ( 2 x. _pi ) < -u _pi ) |
| 60 |
23 59
|
mpbi |
|- -u ( 2 x. _pi ) < -u _pi |
| 61 |
60
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) < -u _pi ) |
| 62 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. ( -u _pi [,] _pi ) ) -> -u _pi <_ A ) |
| 63 |
17 18 11 62
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi <_ A ) |
| 64 |
63
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u _pi <_ A ) |
| 65 |
57 58 53 61 64
|
ltletrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) < A ) |
| 66 |
57 53
|
ltnegd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( -u ( 2 x. _pi ) < A <-> -u A < -u -u ( 2 x. _pi ) ) ) |
| 67 |
65 66
|
mpbid |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A < -u -u ( 2 x. _pi ) ) |
| 68 |
16
|
recnd |
|- ( A e. ( -u _pi [,] _pi ) -> ( 2 x. _pi ) e. CC ) |
| 69 |
68
|
negnegd |
|- ( A e. ( -u _pi [,] _pi ) -> -u -u ( 2 x. _pi ) = ( 2 x. _pi ) ) |
| 70 |
69
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u -u ( 2 x. _pi ) = ( 2 x. _pi ) ) |
| 71 |
67 70
|
breqtrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A < ( 2 x. _pi ) ) |
| 72 |
48 49 51 55 71
|
eliood |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A e. ( 0 (,) ( 2 x. _pi ) ) ) |
| 73 |
|
sinaover2ne0 |
|- ( -u A e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( -u A / 2 ) ) =/= 0 ) |
| 74 |
72 73
|
syl |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( -u A / 2 ) ) =/= 0 ) |
| 75 |
47 74
|
eqnetrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( sin ` ( A / 2 ) ) =/= 0 ) |
| 76 |
75
|
neneqd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -. -u ( sin ` ( A / 2 ) ) = 0 ) |
| 77 |
38
|
sincld |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` ( A / 2 ) ) e. CC ) |
| 78 |
77
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( A / 2 ) ) e. CC ) |
| 79 |
78
|
negeq0d |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( ( sin ` ( A / 2 ) ) = 0 <-> -u ( sin ` ( A / 2 ) ) = 0 ) ) |
| 80 |
76 79
|
mtbird |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -. ( sin ` ( A / 2 ) ) = 0 ) |
| 81 |
80
|
neqned |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
| 82 |
31 36 81
|
syl2anc |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
| 83 |
30 82
|
pm2.61dan |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |