| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem46.cn |
|- ( ph -> F e. ( dom F -cn-> CC ) ) |
| 2 |
|
fourierdlem46.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 3 |
|
fourierdlem46.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 4 |
|
fourierdlem46.qiso |
|- ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 5 |
|
fourierdlem46.qf |
|- ( ph -> Q : ( 0 ... M ) --> H ) |
| 6 |
|
fourierdlem46.i |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 7 |
|
fourierdlem46.10 |
|- ( ph -> ( Q ` I ) < ( Q ` ( I + 1 ) ) ) |
| 8 |
|
fourierdlem46.qiss |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -u _pi (,) _pi ) ) |
| 9 |
|
fourierdlem46.c |
|- ( ph -> C e. RR ) |
| 10 |
|
fourierdlem46.h |
|- H = ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) |
| 11 |
|
fourierdlem46.ranq |
|- ( ph -> ran Q = H ) |
| 12 |
|
pire |
|- _pi e. RR |
| 13 |
12
|
a1i |
|- ( ph -> _pi e. RR ) |
| 14 |
13
|
renegcld |
|- ( ph -> -u _pi e. RR ) |
| 15 |
|
tpssi |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ C e. RR ) -> { -u _pi , _pi , C } C_ RR ) |
| 16 |
14 13 9 15
|
syl3anc |
|- ( ph -> { -u _pi , _pi , C } C_ RR ) |
| 17 |
14 13
|
iccssred |
|- ( ph -> ( -u _pi [,] _pi ) C_ RR ) |
| 18 |
17
|
ssdifssd |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom F ) C_ RR ) |
| 19 |
16 18
|
unssd |
|- ( ph -> ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) C_ RR ) |
| 20 |
10 19
|
eqsstrid |
|- ( ph -> H C_ RR ) |
| 21 |
|
elfzofz |
|- ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) ) |
| 22 |
6 21
|
syl |
|- ( ph -> I e. ( 0 ... M ) ) |
| 23 |
5 22
|
ffvelcdmd |
|- ( ph -> ( Q ` I ) e. H ) |
| 24 |
20 23
|
sseldd |
|- ( ph -> ( Q ` I ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` I ) e. RR ) |
| 26 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 27 |
6 26
|
syl |
|- ( ph -> ( I + 1 ) e. ( 0 ... M ) ) |
| 28 |
5 27
|
ffvelcdmd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. H ) |
| 29 |
20 28
|
sseldd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR ) |
| 30 |
29
|
rexrd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 32 |
7
|
adantr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` I ) < ( Q ` ( I + 1 ) ) ) |
| 33 |
|
simpr |
|- ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> x = ( Q ` I ) ) |
| 34 |
|
simpl |
|- ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> ( Q ` I ) e. dom F ) |
| 35 |
33 34
|
eqeltrd |
|- ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> x e. dom F ) |
| 36 |
35
|
adantll |
|- ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x = ( Q ` I ) ) -> x e. dom F ) |
| 37 |
36
|
adantlr |
|- ( ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ x = ( Q ` I ) ) -> x e. dom F ) |
| 38 |
|
ssun2 |
|- ( ( -u _pi [,] _pi ) \ dom F ) C_ ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) |
| 39 |
38 10
|
sseqtrri |
|- ( ( -u _pi [,] _pi ) \ dom F ) C_ H |
| 40 |
|
ioossicc |
|- ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) |
| 41 |
8 40
|
sstrdi |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
| 42 |
41
|
sselda |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( -u _pi [,] _pi ) ) |
| 43 |
42
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( -u _pi [,] _pi ) ) |
| 44 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. dom F ) |
| 45 |
43 44
|
eldifd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( ( -u _pi [,] _pi ) \ dom F ) ) |
| 46 |
39 45
|
sselid |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. H ) |
| 47 |
11
|
eqcomd |
|- ( ph -> H = ran Q ) |
| 48 |
47
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> H = ran Q ) |
| 49 |
46 48
|
eleqtrd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ran Q ) |
| 50 |
|
simpr |
|- ( ( ph /\ x e. ran Q ) -> x e. ran Q ) |
| 51 |
|
ffn |
|- ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) ) |
| 52 |
5 51
|
syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ x e. ran Q ) -> Q Fn ( 0 ... M ) ) |
| 54 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( x e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = x ) ) |
| 55 |
53 54
|
syl |
|- ( ( ph /\ x e. ran Q ) -> ( x e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = x ) ) |
| 56 |
50 55
|
mpbid |
|- ( ( ph /\ x e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = x ) |
| 57 |
56
|
adantlr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = x ) |
| 58 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> j e. ZZ ) |
| 60 |
|
simplll |
|- ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> ph ) |
| 61 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> j e. ( 0 ... M ) ) |
| 62 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) = x ) |
| 63 |
|
simplr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 64 |
62 63
|
eqeltrd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 65 |
64
|
adantlr |
|- ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 66 |
|
elfzoelz |
|- ( I e. ( 0 ..^ M ) -> I e. ZZ ) |
| 67 |
6 66
|
syl |
|- ( ph -> I e. ZZ ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I e. ZZ ) |
| 69 |
24
|
rexrd |
|- ( ph -> ( Q ` I ) e. RR* ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* ) |
| 71 |
30
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 72 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 73 |
|
ioogtlb |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < ( Q ` j ) ) |
| 74 |
70 71 72 73
|
syl3anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < ( Q ` j ) ) |
| 75 |
4
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 76 |
22
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I e. ( 0 ... M ) ) |
| 77 |
|
simplr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> j e. ( 0 ... M ) ) |
| 78 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( I e. ( 0 ... M ) /\ j e. ( 0 ... M ) ) ) -> ( I < j <-> ( Q ` I ) < ( Q ` j ) ) ) |
| 79 |
75 76 77 78
|
syl12anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( I < j <-> ( Q ` I ) < ( Q ` j ) ) ) |
| 80 |
74 79
|
mpbird |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I < j ) |
| 81 |
|
iooltub |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) |
| 82 |
70 71 72 81
|
syl3anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) |
| 83 |
27
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 84 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( j e. ( 0 ... M ) /\ ( I + 1 ) e. ( 0 ... M ) ) ) -> ( j < ( I + 1 ) <-> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) ) |
| 85 |
75 77 83 84
|
syl12anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( j < ( I + 1 ) <-> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) ) |
| 86 |
82 85
|
mpbird |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> j < ( I + 1 ) ) |
| 87 |
|
btwnnz |
|- ( ( I e. ZZ /\ I < j /\ j < ( I + 1 ) ) -> -. j e. ZZ ) |
| 88 |
68 80 86 87
|
syl3anc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> -. j e. ZZ ) |
| 89 |
60 61 65 88
|
syl21anc |
|- ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> -. j e. ZZ ) |
| 90 |
89
|
adantllr |
|- ( ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> -. j e. ZZ ) |
| 91 |
59 90
|
pm2.65da |
|- ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) -> -. ( Q ` j ) = x ) |
| 92 |
91
|
nrexdv |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) -> -. E. j e. ( 0 ... M ) ( Q ` j ) = x ) |
| 93 |
57 92
|
pm2.65da |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> -. x e. ran Q ) |
| 94 |
93
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. ran Q ) |
| 95 |
49 94
|
condan |
|- ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. dom F ) |
| 96 |
95
|
ralrimiva |
|- ( ph -> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 97 |
|
dfss3 |
|- ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 98 |
96 97
|
sylibr |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F ) |
| 99 |
98
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F ) |
| 100 |
69
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) e. RR* ) |
| 101 |
30
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 102 |
|
icossre |
|- ( ( ( Q ` I ) e. RR /\ ( Q ` ( I + 1 ) ) e. RR* ) -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ RR ) |
| 103 |
24 30 102
|
syl2anc |
|- ( ph -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ RR ) |
| 104 |
103
|
sselda |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR ) |
| 105 |
104
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. RR ) |
| 106 |
24
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) e. RR ) |
| 107 |
69
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* ) |
| 108 |
30
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 109 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |
| 110 |
|
icogelb |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) <_ x ) |
| 111 |
107 108 109 110
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) <_ x ) |
| 112 |
111
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) <_ x ) |
| 113 |
|
neqne |
|- ( -. x = ( Q ` I ) -> x =/= ( Q ` I ) ) |
| 114 |
113
|
adantl |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x =/= ( Q ` I ) ) |
| 115 |
106 105 112 114
|
leneltd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) < x ) |
| 116 |
|
icoltub |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 117 |
107 108 109 116
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 119 |
100 101 105 115 118
|
eliood |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 120 |
99 119
|
sseldd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. dom F ) |
| 121 |
120
|
adantllr |
|- ( ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. dom F ) |
| 122 |
37 121
|
pm2.61dan |
|- ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. dom F ) |
| 123 |
122
|
ralrimiva |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> A. x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 124 |
|
dfss3 |
|- ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 125 |
123 124
|
sylibr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F ) |
| 126 |
1
|
adantr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> F e. ( dom F -cn-> CC ) ) |
| 127 |
|
rescncf |
|- ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F -> ( F e. ( dom F -cn-> CC ) -> ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) ) |
| 128 |
125 126 127
|
sylc |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) |
| 129 |
25 31 32 128
|
icocncflimc |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) e. ( ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 130 |
24
|
leidd |
|- ( ph -> ( Q ` I ) <_ ( Q ` I ) ) |
| 131 |
69 30 69 130 7
|
elicod |
|- ( ph -> ( Q ` I ) e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |
| 132 |
|
fvres |
|- ( ( Q ` I ) e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) = ( F ` ( Q ` I ) ) ) |
| 133 |
131 132
|
syl |
|- ( ph -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) = ( F ` ( Q ` I ) ) ) |
| 134 |
133
|
eqcomd |
|- ( ph -> ( F ` ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) ) |
| 135 |
134
|
adantr |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F ` ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) ) |
| 136 |
|
ioossico |
|- ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) |
| 137 |
136
|
a1i |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |
| 138 |
137
|
resabs1d |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 139 |
138
|
eqcomd |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 140 |
139
|
oveq1d |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 141 |
129 135 140
|
3eltr4d |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F ` ( Q ` I ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 142 |
141
|
ne0d |
|- ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 143 |
|
pnfxr |
|- +oo e. RR* |
| 144 |
143
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 145 |
29
|
ltpnfd |
|- ( ph -> ( Q ` ( I + 1 ) ) < +oo ) |
| 146 |
30 144 145
|
xrltled |
|- ( ph -> ( Q ` ( I + 1 ) ) <_ +oo ) |
| 147 |
|
iooss2 |
|- ( ( +oo e. RR* /\ ( Q ` ( I + 1 ) ) <_ +oo ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,) +oo ) ) |
| 148 |
143 146 147
|
sylancr |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,) +oo ) ) |
| 149 |
148
|
resabs1d |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 150 |
149
|
oveq1d |
|- ( ph -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 151 |
150
|
eqcomd |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 152 |
151
|
adantr |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) ) |
| 153 |
|
limcresi |
|- ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) C_ ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) |
| 154 |
24
|
adantr |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. RR ) |
| 155 |
|
simpl |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ph ) |
| 156 |
12
|
renegcli |
|- -u _pi e. RR |
| 157 |
156
|
rexri |
|- -u _pi e. RR* |
| 158 |
157
|
a1i |
|- ( ph -> -u _pi e. RR* ) |
| 159 |
12
|
rexri |
|- _pi e. RR* |
| 160 |
159
|
a1i |
|- ( ph -> _pi e. RR* ) |
| 161 |
14 13 24 29 7 8
|
fourierdlem10 |
|- ( ph -> ( -u _pi <_ ( Q ` I ) /\ ( Q ` ( I + 1 ) ) <_ _pi ) ) |
| 162 |
161
|
simpld |
|- ( ph -> -u _pi <_ ( Q ` I ) ) |
| 163 |
161
|
simprd |
|- ( ph -> ( Q ` ( I + 1 ) ) <_ _pi ) |
| 164 |
24 29 13 7 163
|
ltletrd |
|- ( ph -> ( Q ` I ) < _pi ) |
| 165 |
158 160 69 162 164
|
elicod |
|- ( ph -> ( Q ` I ) e. ( -u _pi [,) _pi ) ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. ( -u _pi [,) _pi ) ) |
| 167 |
|
simpr |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> -. ( Q ` I ) e. dom F ) |
| 168 |
166 167
|
eldifd |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) |
| 169 |
155 168
|
jca |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) ) |
| 170 |
|
eleq1 |
|- ( x = ( Q ` I ) -> ( x e. ( ( -u _pi [,) _pi ) \ dom F ) <-> ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) ) |
| 171 |
170
|
anbi2d |
|- ( x = ( Q ` I ) -> ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) <-> ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) ) ) |
| 172 |
|
oveq1 |
|- ( x = ( Q ` I ) -> ( x (,) +oo ) = ( ( Q ` I ) (,) +oo ) ) |
| 173 |
172
|
reseq2d |
|- ( x = ( Q ` I ) -> ( F |` ( x (,) +oo ) ) = ( F |` ( ( Q ` I ) (,) +oo ) ) ) |
| 174 |
|
id |
|- ( x = ( Q ` I ) -> x = ( Q ` I ) ) |
| 175 |
173 174
|
oveq12d |
|- ( x = ( Q ` I ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) = ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) ) |
| 176 |
175
|
neeq1d |
|- ( x = ( Q ` I ) -> ( ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) <-> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) ) |
| 177 |
171 176
|
imbi12d |
|- ( x = ( Q ` I ) -> ( ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) ) <-> ( ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) ) ) |
| 178 |
177 2
|
vtoclg |
|- ( ( Q ` I ) e. RR -> ( ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) ) |
| 179 |
154 169 178
|
sylc |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 180 |
|
ssn0 |
|- ( ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) C_ ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) /\ ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 181 |
153 179 180
|
sylancr |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 182 |
152 181
|
eqnetrd |
|- ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 183 |
142 182
|
pm2.61dan |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) ) |
| 184 |
69
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` I ) e. RR* ) |
| 185 |
29
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 186 |
7
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` I ) < ( Q ` ( I + 1 ) ) ) |
| 187 |
|
simpr |
|- ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> x = ( Q ` ( I + 1 ) ) ) |
| 188 |
|
simpl |
|- ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. dom F ) |
| 189 |
187 188
|
eqeltrd |
|- ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F ) |
| 190 |
189
|
adantll |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F ) |
| 191 |
190
|
adantlr |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F ) |
| 192 |
98
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F ) |
| 193 |
69
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` I ) e. RR* ) |
| 194 |
30
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 195 |
69
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* ) |
| 196 |
29
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 197 |
|
iocssre |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ RR ) |
| 198 |
195 196 197
|
syl2anc |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ RR ) |
| 199 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |
| 200 |
198 199
|
sseldd |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. RR ) |
| 201 |
200
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. RR ) |
| 202 |
30
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 203 |
|
iocgtlb |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x ) |
| 204 |
195 202 199 203
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x ) |
| 205 |
204
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` I ) < x ) |
| 206 |
29
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 207 |
|
iocleub |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x <_ ( Q ` ( I + 1 ) ) ) |
| 208 |
195 202 199 207
|
syl3anc |
|- ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x <_ ( Q ` ( I + 1 ) ) ) |
| 209 |
208
|
adantr |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x <_ ( Q ` ( I + 1 ) ) ) |
| 210 |
|
neqne |
|- ( -. x = ( Q ` ( I + 1 ) ) -> x =/= ( Q ` ( I + 1 ) ) ) |
| 211 |
210
|
necomd |
|- ( -. x = ( Q ` ( I + 1 ) ) -> ( Q ` ( I + 1 ) ) =/= x ) |
| 212 |
211
|
adantl |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) =/= x ) |
| 213 |
201 206 209 212
|
leneltd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x < ( Q ` ( I + 1 ) ) ) |
| 214 |
193 194 201 205 213
|
eliood |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 215 |
192 214
|
sseldd |
|- ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. dom F ) |
| 216 |
215
|
adantllr |
|- ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. dom F ) |
| 217 |
191 216
|
pm2.61dan |
|- ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. dom F ) |
| 218 |
217
|
ralrimiva |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> A. x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 219 |
|
dfss3 |
|- ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) x e. dom F ) |
| 220 |
218 219
|
sylibr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F ) |
| 221 |
1
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> F e. ( dom F -cn-> CC ) ) |
| 222 |
|
rescncf |
|- ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F -> ( F e. ( dom F -cn-> CC ) -> ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) ) |
| 223 |
220 221 222
|
sylc |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) |
| 224 |
184 185 186 223
|
ioccncflimc |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) |
| 225 |
29
|
leidd |
|- ( ph -> ( Q ` ( I + 1 ) ) <_ ( Q ` ( I + 1 ) ) ) |
| 226 |
69 30 30 7 225
|
eliocd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |
| 227 |
|
fvres |
|- ( ( Q ` ( I + 1 ) ) e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) = ( F ` ( Q ` ( I + 1 ) ) ) ) |
| 228 |
226 227
|
syl |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) = ( F ` ( Q ` ( I + 1 ) ) ) ) |
| 229 |
228
|
eqcomd |
|- ( ph -> ( F ` ( Q ` ( I + 1 ) ) ) = ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) ) |
| 230 |
|
ioossioc |
|- ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) |
| 231 |
|
resabs1 |
|- ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 232 |
230 231
|
ax-mp |
|- ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 233 |
232
|
eqcomi |
|- ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) |
| 234 |
233
|
oveq1i |
|- ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) |
| 235 |
234
|
a1i |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) |
| 236 |
229 235
|
eleq12d |
|- ( ph -> ( ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) <-> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) ) |
| 237 |
236
|
adantr |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) <-> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) ) |
| 238 |
224 237
|
mpbird |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) |
| 239 |
238
|
ne0d |
|- ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 240 |
|
mnfxr |
|- -oo e. RR* |
| 241 |
240
|
a1i |
|- ( ph -> -oo e. RR* ) |
| 242 |
24
|
mnfltd |
|- ( ph -> -oo < ( Q ` I ) ) |
| 243 |
241 69 242
|
xrltled |
|- ( ph -> -oo <_ ( Q ` I ) ) |
| 244 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ ( Q ` I ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |
| 245 |
240 243 244
|
sylancr |
|- ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |
| 246 |
245
|
resabs1d |
|- ( ph -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 247 |
246
|
eqcomd |
|- ( ph -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 248 |
247
|
adantr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 249 |
248
|
oveq1d |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) |
| 250 |
|
limcresi |
|- ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) C_ ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) |
| 251 |
29
|
adantr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR ) |
| 252 |
|
simpl |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ph ) |
| 253 |
157
|
a1i |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -u _pi e. RR* ) |
| 254 |
159
|
a1i |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> _pi e. RR* ) |
| 255 |
30
|
adantr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 256 |
14 24 29 162 7
|
lelttrd |
|- ( ph -> -u _pi < ( Q ` ( I + 1 ) ) ) |
| 257 |
256
|
adantr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -u _pi < ( Q ` ( I + 1 ) ) ) |
| 258 |
163
|
adantr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) <_ _pi ) |
| 259 |
253 254 255 257 258
|
eliocd |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. ( -u _pi (,] _pi ) ) |
| 260 |
|
simpr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -. ( Q ` ( I + 1 ) ) e. dom F ) |
| 261 |
259 260
|
eldifd |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) |
| 262 |
252 261
|
jca |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) ) |
| 263 |
|
eleq1 |
|- ( x = ( Q ` ( I + 1 ) ) -> ( x e. ( ( -u _pi (,] _pi ) \ dom F ) <-> ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) ) |
| 264 |
263
|
anbi2d |
|- ( x = ( Q ` ( I + 1 ) ) -> ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) <-> ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) ) ) |
| 265 |
|
oveq2 |
|- ( x = ( Q ` ( I + 1 ) ) -> ( -oo (,) x ) = ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |
| 266 |
265
|
reseq2d |
|- ( x = ( Q ` ( I + 1 ) ) -> ( F |` ( -oo (,) x ) ) = ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) ) |
| 267 |
|
id |
|- ( x = ( Q ` ( I + 1 ) ) -> x = ( Q ` ( I + 1 ) ) ) |
| 268 |
266 267
|
oveq12d |
|- ( x = ( Q ` ( I + 1 ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) |
| 269 |
268
|
neeq1d |
|- ( x = ( Q ` ( I + 1 ) ) -> ( ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) <-> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) ) |
| 270 |
264 269
|
imbi12d |
|- ( x = ( Q ` ( I + 1 ) ) -> ( ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) ) <-> ( ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) ) ) |
| 271 |
270 3
|
vtoclg |
|- ( ( Q ` ( I + 1 ) ) e. RR -> ( ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) ) |
| 272 |
251 262 271
|
sylc |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 273 |
|
ssn0 |
|- ( ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) C_ ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) /\ ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) -> ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 274 |
250 272 273
|
sylancr |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 275 |
249 274
|
eqnetrd |
|- ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 276 |
239 275
|
pm2.61dan |
|- ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) |
| 277 |
183 276
|
jca |
|- ( ph -> ( ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) /\ ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) ) |