Metamath Proof Explorer


Theorem fourierdlem46

Description: The function F has a limit at the bounds of every interval induced by the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem46.cn φF:domFcn
fourierdlem46.rlim φxππdomFFx+∞limx
fourierdlem46.llim φxππdomFF−∞xlimx
fourierdlem46.qiso φQIsom<,<0MH
fourierdlem46.qf φQ:0MH
fourierdlem46.i φI0..^M
fourierdlem46.10 φQI<QI+1
fourierdlem46.qiss φQIQI+1ππ
fourierdlem46.c φC
fourierdlem46.h H=ππCππdomF
fourierdlem46.ranq φranQ=H
Assertion fourierdlem46 φFQIQI+1limQIFQIQI+1limQI+1

Proof

Step Hyp Ref Expression
1 fourierdlem46.cn φF:domFcn
2 fourierdlem46.rlim φxππdomFFx+∞limx
3 fourierdlem46.llim φxππdomFF−∞xlimx
4 fourierdlem46.qiso φQIsom<,<0MH
5 fourierdlem46.qf φQ:0MH
6 fourierdlem46.i φI0..^M
7 fourierdlem46.10 φQI<QI+1
8 fourierdlem46.qiss φQIQI+1ππ
9 fourierdlem46.c φC
10 fourierdlem46.h H=ππCππdomF
11 fourierdlem46.ranq φranQ=H
12 pire π
13 12 a1i φπ
14 13 renegcld φπ
15 tpssi ππCππC
16 14 13 9 15 syl3anc φππC
17 14 13 iccssred φππ
18 17 ssdifssd φππdomF
19 16 18 unssd φππCππdomF
20 10 19 eqsstrid φH
21 elfzofz I0..^MI0M
22 6 21 syl φI0M
23 5 22 ffvelcdmd φQIH
24 20 23 sseldd φQI
25 24 adantr φQIdomFQI
26 fzofzp1 I0..^MI+10M
27 6 26 syl φI+10M
28 5 27 ffvelcdmd φQI+1H
29 20 28 sseldd φQI+1
30 29 rexrd φQI+1*
31 30 adantr φQIdomFQI+1*
32 7 adantr φQIdomFQI<QI+1
33 simpr QIdomFx=QIx=QI
34 simpl QIdomFx=QIQIdomF
35 33 34 eqeltrd QIdomFx=QIxdomF
36 35 adantll φQIdomFx=QIxdomF
37 36 adantlr φQIdomFxQIQI+1x=QIxdomF
38 ssun2 ππdomFππCππdomF
39 38 10 sseqtrri ππdomFH
40 ioossicc ππππ
41 8 40 sstrdi φQIQI+1ππ
42 41 sselda φxQIQI+1xππ
43 42 adantr φxQIQI+1¬xdomFxππ
44 simpr φxQIQI+1¬xdomF¬xdomF
45 43 44 eldifd φxQIQI+1¬xdomFxππdomF
46 39 45 sselid φxQIQI+1¬xdomFxH
47 11 eqcomd φH=ranQ
48 47 ad2antrr φxQIQI+1¬xdomFH=ranQ
49 46 48 eleqtrd φxQIQI+1¬xdomFxranQ
50 simpr φxranQxranQ
51 ffn Q:0MHQFn0M
52 5 51 syl φQFn0M
53 52 adantr φxranQQFn0M
54 fvelrnb QFn0MxranQj0MQj=x
55 53 54 syl φxranQxranQj0MQj=x
56 50 55 mpbid φxranQj0MQj=x
57 56 adantlr φxQIQI+1xranQj0MQj=x
58 elfzelz j0Mj
59 58 ad2antlr φxQIQI+1xranQj0MQj=xj
60 simplll φxQIQI+1j0MQj=xφ
61 simplr φxQIQI+1j0MQj=xj0M
62 simpr φxQIQI+1Qj=xQj=x
63 simplr φxQIQI+1Qj=xxQIQI+1
64 62 63 eqeltrd φxQIQI+1Qj=xQjQIQI+1
65 64 adantlr φxQIQI+1j0MQj=xQjQIQI+1
66 elfzoelz I0..^MI
67 6 66 syl φI
68 67 ad2antrr φj0MQjQIQI+1I
69 24 rexrd φQI*
70 69 ad2antrr φj0MQjQIQI+1QI*
71 30 ad2antrr φj0MQjQIQI+1QI+1*
72 simpr φj0MQjQIQI+1QjQIQI+1
73 ioogtlb QI*QI+1*QjQIQI+1QI<Qj
74 70 71 72 73 syl3anc φj0MQjQIQI+1QI<Qj
75 4 ad2antrr φj0MQjQIQI+1QIsom<,<0MH
76 22 ad2antrr φj0MQjQIQI+1I0M
77 simplr φj0MQjQIQI+1j0M
78 isorel QIsom<,<0MHI0Mj0MI<jQI<Qj
79 75 76 77 78 syl12anc φj0MQjQIQI+1I<jQI<Qj
80 74 79 mpbird φj0MQjQIQI+1I<j
81 iooltub QI*QI+1*QjQIQI+1Qj<QI+1
82 70 71 72 81 syl3anc φj0MQjQIQI+1Qj<QI+1
83 27 ad2antrr φj0MQjQIQI+1I+10M
84 isorel QIsom<,<0MHj0MI+10Mj<I+1Qj<QI+1
85 75 77 83 84 syl12anc φj0MQjQIQI+1j<I+1Qj<QI+1
86 82 85 mpbird φj0MQjQIQI+1j<I+1
87 btwnnz II<jj<I+1¬j
88 68 80 86 87 syl3anc φj0MQjQIQI+1¬j
89 60 61 65 88 syl21anc φxQIQI+1j0MQj=x¬j
90 89 adantllr φxQIQI+1xranQj0MQj=x¬j
91 59 90 pm2.65da φxQIQI+1xranQj0M¬Qj=x
92 91 nrexdv φxQIQI+1xranQ¬j0MQj=x
93 57 92 pm2.65da φxQIQI+1¬xranQ
94 93 adantr φxQIQI+1¬xdomF¬xranQ
95 49 94 condan φxQIQI+1xdomF
96 95 ralrimiva φxQIQI+1xdomF
97 dfss3 QIQI+1domFxQIQI+1xdomF
98 96 97 sylibr φQIQI+1domF
99 98 ad2antrr φxQIQI+1¬x=QIQIQI+1domF
100 69 ad2antrr φxQIQI+1¬x=QIQI*
101 30 ad2antrr φxQIQI+1¬x=QIQI+1*
102 icossre QIQI+1*QIQI+1
103 24 30 102 syl2anc φQIQI+1
104 103 sselda φxQIQI+1x
105 104 adantr φxQIQI+1¬x=QIx
106 24 ad2antrr φxQIQI+1¬x=QIQI
107 69 adantr φxQIQI+1QI*
108 30 adantr φxQIQI+1QI+1*
109 simpr φxQIQI+1xQIQI+1
110 icogelb QI*QI+1*xQIQI+1QIx
111 107 108 109 110 syl3anc φxQIQI+1QIx
112 111 adantr φxQIQI+1¬x=QIQIx
113 neqne ¬x=QIxQI
114 113 adantl φxQIQI+1¬x=QIxQI
115 106 105 112 114 leneltd φxQIQI+1¬x=QIQI<x
116 icoltub QI*QI+1*xQIQI+1x<QI+1
117 107 108 109 116 syl3anc φxQIQI+1x<QI+1
118 117 adantr φxQIQI+1¬x=QIx<QI+1
119 100 101 105 115 118 eliood φxQIQI+1¬x=QIxQIQI+1
120 99 119 sseldd φxQIQI+1¬x=QIxdomF
121 120 adantllr φQIdomFxQIQI+1¬x=QIxdomF
122 37 121 pm2.61dan φQIdomFxQIQI+1xdomF
123 122 ralrimiva φQIdomFxQIQI+1xdomF
124 dfss3 QIQI+1domFxQIQI+1xdomF
125 123 124 sylibr φQIdomFQIQI+1domF
126 1 adantr φQIdomFF:domFcn
127 rescncf QIQI+1domFF:domFcnFQIQI+1:QIQI+1cn
128 125 126 127 sylc φQIdomFFQIQI+1:QIQI+1cn
129 25 31 32 128 icocncflimc φQIdomFFQIQI+1QIFQIQI+1QIQI+1limQI
130 24 leidd φQIQI
131 69 30 69 130 7 elicod φQIQIQI+1
132 fvres QIQIQI+1FQIQI+1QI=FQI
133 131 132 syl φFQIQI+1QI=FQI
134 133 eqcomd φFQI=FQIQI+1QI
135 134 adantr φQIdomFFQI=FQIQI+1QI
136 ioossico QIQI+1QIQI+1
137 136 a1i φQIdomFQIQI+1QIQI+1
138 137 resabs1d φQIdomFFQIQI+1QIQI+1=FQIQI+1
139 138 eqcomd φQIdomFFQIQI+1=FQIQI+1QIQI+1
140 139 oveq1d φQIdomFFQIQI+1limQI=FQIQI+1QIQI+1limQI
141 129 135 140 3eltr4d φQIdomFFQIFQIQI+1limQI
142 141 ne0d φQIdomFFQIQI+1limQI
143 pnfxr +∞*
144 143 a1i φ+∞*
145 29 ltpnfd φQI+1<+∞
146 30 144 145 xrltled φQI+1+∞
147 iooss2 +∞*QI+1+∞QIQI+1QI+∞
148 143 146 147 sylancr φQIQI+1QI+∞
149 148 resabs1d φFQI+∞QIQI+1=FQIQI+1
150 149 oveq1d φFQI+∞QIQI+1limQI=FQIQI+1limQI
151 150 eqcomd φFQIQI+1limQI=FQI+∞QIQI+1limQI
152 151 adantr φ¬QIdomFFQIQI+1limQI=FQI+∞QIQI+1limQI
153 limcresi FQI+∞limQIFQI+∞QIQI+1limQI
154 24 adantr φ¬QIdomFQI
155 simpl φ¬QIdomFφ
156 12 renegcli π
157 156 rexri π*
158 157 a1i φπ*
159 12 rexri π*
160 159 a1i φπ*
161 14 13 24 29 7 8 fourierdlem10 φπQIQI+1π
162 161 simpld φπQI
163 161 simprd φQI+1π
164 24 29 13 7 163 ltletrd φQI<π
165 158 160 69 162 164 elicod φQIππ
166 165 adantr φ¬QIdomFQIππ
167 simpr φ¬QIdomF¬QIdomF
168 166 167 eldifd φ¬QIdomFQIππdomF
169 155 168 jca φ¬QIdomFφQIππdomF
170 eleq1 x=QIxππdomFQIππdomF
171 170 anbi2d x=QIφxππdomFφQIππdomF
172 oveq1 x=QIx+∞=QI+∞
173 172 reseq2d x=QIFx+∞=FQI+∞
174 id x=QIx=QI
175 173 174 oveq12d x=QIFx+∞limx=FQI+∞limQI
176 175 neeq1d x=QIFx+∞limxFQI+∞limQI
177 171 176 imbi12d x=QIφxππdomFFx+∞limxφQIππdomFFQI+∞limQI
178 177 2 vtoclg QIφQIππdomFFQI+∞limQI
179 154 169 178 sylc φ¬QIdomFFQI+∞limQI
180 ssn0 FQI+∞limQIFQI+∞QIQI+1limQIFQI+∞limQIFQI+∞QIQI+1limQI
181 153 179 180 sylancr φ¬QIdomFFQI+∞QIQI+1limQI
182 152 181 eqnetrd φ¬QIdomFFQIQI+1limQI
183 142 182 pm2.61dan φFQIQI+1limQI
184 69 adantr φQI+1domFQI*
185 29 adantr φQI+1domFQI+1
186 7 adantr φQI+1domFQI<QI+1
187 simpr QI+1domFx=QI+1x=QI+1
188 simpl QI+1domFx=QI+1QI+1domF
189 187 188 eqeltrd QI+1domFx=QI+1xdomF
190 189 adantll φQI+1domFx=QI+1xdomF
191 190 adantlr φQI+1domFxQIQI+1x=QI+1xdomF
192 98 ad2antrr φxQIQI+1¬x=QI+1QIQI+1domF
193 69 ad2antrr φxQIQI+1¬x=QI+1QI*
194 30 ad2antrr φxQIQI+1¬x=QI+1QI+1*
195 69 adantr φxQIQI+1QI*
196 29 adantr φxQIQI+1QI+1
197 iocssre QI*QI+1QIQI+1
198 195 196 197 syl2anc φxQIQI+1QIQI+1
199 simpr φxQIQI+1xQIQI+1
200 198 199 sseldd φxQIQI+1x
201 200 adantr φxQIQI+1¬x=QI+1x
202 30 adantr φxQIQI+1QI+1*
203 iocgtlb QI*QI+1*xQIQI+1QI<x
204 195 202 199 203 syl3anc φxQIQI+1QI<x
205 204 adantr φxQIQI+1¬x=QI+1QI<x
206 29 ad2antrr φxQIQI+1¬x=QI+1QI+1
207 iocleub QI*QI+1*xQIQI+1xQI+1
208 195 202 199 207 syl3anc φxQIQI+1xQI+1
209 208 adantr φxQIQI+1¬x=QI+1xQI+1
210 neqne ¬x=QI+1xQI+1
211 210 necomd ¬x=QI+1QI+1x
212 211 adantl φxQIQI+1¬x=QI+1QI+1x
213 201 206 209 212 leneltd φxQIQI+1¬x=QI+1x<QI+1
214 193 194 201 205 213 eliood φxQIQI+1¬x=QI+1xQIQI+1
215 192 214 sseldd φxQIQI+1¬x=QI+1xdomF
216 215 adantllr φQI+1domFxQIQI+1¬x=QI+1xdomF
217 191 216 pm2.61dan φQI+1domFxQIQI+1xdomF
218 217 ralrimiva φQI+1domFxQIQI+1xdomF
219 dfss3 QIQI+1domFxQIQI+1xdomF
220 218 219 sylibr φQI+1domFQIQI+1domF
221 1 adantr φQI+1domFF:domFcn
222 rescncf QIQI+1domFF:domFcnFQIQI+1:QIQI+1cn
223 220 221 222 sylc φQI+1domFFQIQI+1:QIQI+1cn
224 184 185 186 223 ioccncflimc φQI+1domFFQIQI+1QI+1FQIQI+1QIQI+1limQI+1
225 29 leidd φQI+1QI+1
226 69 30 30 7 225 eliocd φQI+1QIQI+1
227 fvres QI+1QIQI+1FQIQI+1QI+1=FQI+1
228 226 227 syl φFQIQI+1QI+1=FQI+1
229 228 eqcomd φFQI+1=FQIQI+1QI+1
230 ioossioc QIQI+1QIQI+1
231 resabs1 QIQI+1QIQI+1FQIQI+1QIQI+1=FQIQI+1
232 230 231 ax-mp FQIQI+1QIQI+1=FQIQI+1
233 232 eqcomi FQIQI+1=FQIQI+1QIQI+1
234 233 oveq1i FQIQI+1limQI+1=FQIQI+1QIQI+1limQI+1
235 234 a1i φFQIQI+1limQI+1=FQIQI+1QIQI+1limQI+1
236 229 235 eleq12d φFQI+1FQIQI+1limQI+1FQIQI+1QI+1FQIQI+1QIQI+1limQI+1
237 236 adantr φQI+1domFFQI+1FQIQI+1limQI+1FQIQI+1QI+1FQIQI+1QIQI+1limQI+1
238 224 237 mpbird φQI+1domFFQI+1FQIQI+1limQI+1
239 238 ne0d φQI+1domFFQIQI+1limQI+1
240 mnfxr −∞*
241 240 a1i φ−∞*
242 24 mnfltd φ−∞<QI
243 241 69 242 xrltled φ−∞QI
244 iooss1 −∞*−∞QIQIQI+1−∞QI+1
245 240 243 244 sylancr φQIQI+1−∞QI+1
246 245 resabs1d φF−∞QI+1QIQI+1=FQIQI+1
247 246 eqcomd φFQIQI+1=F−∞QI+1QIQI+1
248 247 adantr φ¬QI+1domFFQIQI+1=F−∞QI+1QIQI+1
249 248 oveq1d φ¬QI+1domFFQIQI+1limQI+1=F−∞QI+1QIQI+1limQI+1
250 limcresi F−∞QI+1limQI+1F−∞QI+1QIQI+1limQI+1
251 29 adantr φ¬QI+1domFQI+1
252 simpl φ¬QI+1domFφ
253 157 a1i φ¬QI+1domFπ*
254 159 a1i φ¬QI+1domFπ*
255 30 adantr φ¬QI+1domFQI+1*
256 14 24 29 162 7 lelttrd φπ<QI+1
257 256 adantr φ¬QI+1domFπ<QI+1
258 163 adantr φ¬QI+1domFQI+1π
259 253 254 255 257 258 eliocd φ¬QI+1domFQI+1ππ
260 simpr φ¬QI+1domF¬QI+1domF
261 259 260 eldifd φ¬QI+1domFQI+1ππdomF
262 252 261 jca φ¬QI+1domFφQI+1ππdomF
263 eleq1 x=QI+1xππdomFQI+1ππdomF
264 263 anbi2d x=QI+1φxππdomFφQI+1ππdomF
265 oveq2 x=QI+1−∞x=−∞QI+1
266 265 reseq2d x=QI+1F−∞x=F−∞QI+1
267 id x=QI+1x=QI+1
268 266 267 oveq12d x=QI+1F−∞xlimx=F−∞QI+1limQI+1
269 268 neeq1d x=QI+1F−∞xlimxF−∞QI+1limQI+1
270 264 269 imbi12d x=QI+1φxππdomFF−∞xlimxφQI+1ππdomFF−∞QI+1limQI+1
271 270 3 vtoclg QI+1φQI+1ππdomFF−∞QI+1limQI+1
272 251 262 271 sylc φ¬QI+1domFF−∞QI+1limQI+1
273 ssn0 F−∞QI+1limQI+1F−∞QI+1QIQI+1limQI+1F−∞QI+1limQI+1F−∞QI+1QIQI+1limQI+1
274 250 272 273 sylancr φ¬QI+1domFF−∞QI+1QIQI+1limQI+1
275 249 274 eqnetrd φ¬QI+1domFFQIQI+1limQI+1
276 239 275 pm2.61dan φFQIQI+1limQI+1
277 183 276 jca φFQIQI+1limQIFQIQI+1limQI+1