Metamath Proof Explorer


Theorem icocncflimc

Description: Limit at the lower bound, of a continuous function defined on a left-closed right-open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses icocncflimc.a φ A
icocncflimc.b φ B *
icocncflimc.altb φ A < B
icocncflimc.f φ F : A B cn
Assertion icocncflimc φ F A F A B lim A

Proof

Step Hyp Ref Expression
1 icocncflimc.a φ A
2 icocncflimc.b φ B *
3 icocncflimc.altb φ A < B
4 icocncflimc.f φ F : A B cn
5 1 rexrd φ A *
6 1 leidd φ A A
7 5 2 5 6 3 elicod φ A A B
8 4 7 cnlimci φ F A F lim A
9 cncfrss F : A B cn A B
10 4 9 syl φ A B
11 ssid
12 eqid TopOpen fld = TopOpen fld
13 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
14 eqid TopOpen fld 𝑡 = TopOpen fld 𝑡
15 12 13 14 cncfcn A B A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld 𝑡
16 10 11 15 sylancl φ A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld 𝑡
17 4 16 eleqtrd φ F TopOpen fld 𝑡 A B Cn TopOpen fld 𝑡
18 12 cnfldtopon TopOpen fld TopOn
19 18 a1i φ TopOpen fld TopOn
20 resttopon TopOpen fld TopOn A B TopOpen fld 𝑡 A B TopOn A B
21 19 10 20 syl2anc φ TopOpen fld 𝑡 A B TopOn A B
22 12 cnfldtop TopOpen fld Top
23 unicntop = TopOpen fld
24 23 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
25 22 24 ax-mp TopOpen fld 𝑡 = TopOpen fld
26 25 cnfldtopon TopOpen fld 𝑡 TopOn
27 cncnp TopOpen fld 𝑡 A B TopOn A B TopOpen fld 𝑡 TopOn F TopOpen fld 𝑡 A B Cn TopOpen fld 𝑡 F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld 𝑡 x
28 21 26 27 sylancl φ F TopOpen fld 𝑡 A B Cn TopOpen fld 𝑡 F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld 𝑡 x
29 17 28 mpbid φ F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld 𝑡 x
30 29 simpld φ F : A B
31 ioossico A B A B
32 31 a1i φ A B A B
33 eqid TopOpen fld 𝑡 A B A = TopOpen fld 𝑡 A B A
34 1 recnd φ A
35 23 ntrtop TopOpen fld Top int TopOpen fld =
36 22 35 ax-mp int TopOpen fld =
37 undif A B A B A B =
38 10 37 sylib φ A B A B =
39 38 eqcomd φ = A B A B
40 39 fveq2d φ int TopOpen fld = int TopOpen fld A B A B
41 36 40 eqtr3id φ = int TopOpen fld A B A B
42 34 41 eleqtrd φ A int TopOpen fld A B A B
43 42 7 elind φ A int TopOpen fld A B A B A B
44 22 a1i φ TopOpen fld Top
45 ssid A B A B
46 45 a1i φ A B A B
47 23 13 restntr TopOpen fld Top A B A B A B int TopOpen fld 𝑡 A B A B = int TopOpen fld A B A B A B
48 44 10 46 47 syl3anc φ int TopOpen fld 𝑡 A B A B = int TopOpen fld A B A B A B
49 43 48 eleqtrrd φ A int TopOpen fld 𝑡 A B A B
50 7 snssd φ A A B
51 ssequn2 A A B A B A = A B
52 50 51 sylib φ A B A = A B
53 52 eqcomd φ A B = A B A
54 53 oveq2d φ TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B A
55 54 fveq2d φ int TopOpen fld 𝑡 A B = int TopOpen fld 𝑡 A B A
56 snunioo1 A * B * A < B A B A = A B
57 5 2 3 56 syl3anc φ A B A = A B
58 57 eqcomd φ A B = A B A
59 55 58 fveq12d φ int TopOpen fld 𝑡 A B A B = int TopOpen fld 𝑡 A B A A B A
60 49 59 eleqtrd φ A int TopOpen fld 𝑡 A B A A B A
61 30 32 10 12 33 60 limcres φ F A B lim A = F lim A
62 8 61 eleqtrrd φ F A F A B lim A