| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icocncflimc.a |
|
| 2 |
|
icocncflimc.b |
|
| 3 |
|
icocncflimc.altb |
|
| 4 |
|
icocncflimc.f |
|
| 5 |
1
|
rexrd |
|
| 6 |
1
|
leidd |
|
| 7 |
5 2 5 6 3
|
elicod |
|
| 8 |
4 7
|
cnlimci |
|
| 9 |
|
cncfrss |
|
| 10 |
4 9
|
syl |
|
| 11 |
|
ssid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
12 13 14
|
cncfcn |
|
| 16 |
10 11 15
|
sylancl |
|
| 17 |
4 16
|
eleqtrd |
|
| 18 |
12
|
cnfldtopon |
|
| 19 |
18
|
a1i |
|
| 20 |
|
resttopon |
|
| 21 |
19 10 20
|
syl2anc |
|
| 22 |
12
|
cnfldtop |
|
| 23 |
|
unicntop |
|
| 24 |
23
|
restid |
|
| 25 |
22 24
|
ax-mp |
|
| 26 |
25
|
cnfldtopon |
|
| 27 |
|
cncnp |
|
| 28 |
21 26 27
|
sylancl |
|
| 29 |
17 28
|
mpbid |
|
| 30 |
29
|
simpld |
|
| 31 |
|
ioossico |
|
| 32 |
31
|
a1i |
|
| 33 |
|
eqid |
|
| 34 |
1
|
recnd |
|
| 35 |
23
|
ntrtop |
|
| 36 |
22 35
|
ax-mp |
|
| 37 |
|
undif |
|
| 38 |
10 37
|
sylib |
|
| 39 |
38
|
eqcomd |
|
| 40 |
39
|
fveq2d |
|
| 41 |
36 40
|
eqtr3id |
|
| 42 |
34 41
|
eleqtrd |
|
| 43 |
42 7
|
elind |
|
| 44 |
22
|
a1i |
|
| 45 |
|
ssid |
|
| 46 |
45
|
a1i |
|
| 47 |
23 13
|
restntr |
|
| 48 |
44 10 46 47
|
syl3anc |
|
| 49 |
43 48
|
eleqtrrd |
|
| 50 |
7
|
snssd |
|
| 51 |
|
ssequn2 |
|
| 52 |
50 51
|
sylib |
|
| 53 |
52
|
eqcomd |
|
| 54 |
53
|
oveq2d |
|
| 55 |
54
|
fveq2d |
|
| 56 |
|
snunioo1 |
|
| 57 |
5 2 3 56
|
syl3anc |
|
| 58 |
57
|
eqcomd |
|
| 59 |
55 58
|
fveq12d |
|
| 60 |
49 59
|
eleqtrd |
|
| 61 |
30 32 10 12 33 60
|
limcres |
|
| 62 |
8 61
|
eleqtrrd |
|