| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  0  ∈  ℝ* ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 5 | 3 4 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 6 | 5 | rexri | ⊢ ( 2  ·  π )  ∈  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  ( 2  ·  π )  ∈  ℝ* ) | 
						
							| 8 | 4 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - π  ∈  ℝ ) | 
						
							| 10 | 4 | a1i | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  π  ∈  ℝ ) | 
						
							| 11 |  | id | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ∈  ( - π [,] π ) ) | 
						
							| 12 |  | eliccre | ⊢ ( ( - π  ∈  ℝ  ∧  π  ∈  ℝ  ∧  𝐴  ∈  ( - π [,] π ) )  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ∈  ℝ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 16 | 5 | a1i | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 2  ·  π )  ∈  ℝ ) | 
						
							| 17 | 9 | rexrd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - π  ∈  ℝ* ) | 
						
							| 18 | 10 | rexrd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  π  ∈  ℝ* ) | 
						
							| 19 |  | iccleub | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  𝐴  ∈  ( - π [,] π ) )  →  𝐴  ≤  π ) | 
						
							| 20 | 17 18 11 19 | syl3anc | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ≤  π ) | 
						
							| 21 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 22 |  | 2timesgt | ⊢ ( π  ∈  ℝ+  →  π  <  ( 2  ·  π ) ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ π  <  ( 2  ·  π ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  π  <  ( 2  ·  π ) ) | 
						
							| 25 | 13 10 16 20 24 | lelttrd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  <  ( 2  ·  π ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  𝐴  <  ( 2  ·  π ) ) | 
						
							| 27 | 2 7 14 15 26 | eliood | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  0  <  𝐴 )  →  𝐴  ∈  ( 0 (,) ( 2  ·  π ) ) ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  0  <  𝐴 )  →  𝐴  ∈  ( 0 (,) ( 2  ·  π ) ) ) | 
						
							| 29 |  | sinaover2ne0 | ⊢ ( 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  0  <  𝐴 )  →  ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 31 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  𝐴  ∈  ( - π [,] π ) ) | 
						
							| 32 | 31 13 | syl | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 33 |  | 0red | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 35 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  ¬  0  <  𝐴 ) | 
						
							| 36 | 32 33 34 35 | lttri5d | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  𝐴  <  0 ) | 
						
							| 37 | 13 | recnd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  𝐴  ∈  ℂ ) | 
						
							| 38 | 37 | halfcld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 39 |  | sinneg | ⊢ ( ( 𝐴  /  2 )  ∈  ℂ  →  ( sin ‘ - ( 𝐴  /  2 ) )  =  - ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( sin ‘ - ( 𝐴  /  2 ) )  =  - ( sin ‘ ( 𝐴  /  2 ) ) ) | 
						
							| 41 |  | 2cnd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  2  ∈  ℂ ) | 
						
							| 42 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  2  ≠  0 ) | 
						
							| 44 | 37 41 43 | divnegd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - ( 𝐴  /  2 )  =  ( - 𝐴  /  2 ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( sin ‘ - ( 𝐴  /  2 ) )  =  ( sin ‘ ( - 𝐴  /  2 ) ) ) | 
						
							| 46 | 40 45 | eqtr3d | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - ( sin ‘ ( 𝐴  /  2 ) )  =  ( sin ‘ ( - 𝐴  /  2 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - ( sin ‘ ( 𝐴  /  2 ) )  =  ( sin ‘ ( - 𝐴  /  2 ) ) ) | 
						
							| 48 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  0  ∈  ℝ* ) | 
						
							| 49 | 6 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( 2  ·  π )  ∈  ℝ* ) | 
						
							| 50 | 13 | renegcld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - 𝐴  ∈  ℝ ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  𝐴  <  0 ) | 
						
							| 53 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 54 | 53 | lt0neg1d | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 55 | 52 54 | mpbid | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  0  <  - 𝐴 ) | 
						
							| 56 | 5 | renegcli | ⊢ - ( 2  ·  π )  ∈  ℝ | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - ( 2  ·  π )  ∈  ℝ ) | 
						
							| 58 | 8 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - π  ∈  ℝ ) | 
						
							| 59 | 4 5 | ltnegi | ⊢ ( π  <  ( 2  ·  π )  ↔  - ( 2  ·  π )  <  - π ) | 
						
							| 60 | 23 59 | mpbi | ⊢ - ( 2  ·  π )  <  - π | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - ( 2  ·  π )  <  - π ) | 
						
							| 62 |  | iccgelb | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ*  ∧  𝐴  ∈  ( - π [,] π ) )  →  - π  ≤  𝐴 ) | 
						
							| 63 | 17 18 11 62 | syl3anc | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - π  ≤  𝐴 ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - π  ≤  𝐴 ) | 
						
							| 65 | 57 58 53 61 64 | ltletrd | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - ( 2  ·  π )  <  𝐴 ) | 
						
							| 66 | 57 53 | ltnegd | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( - ( 2  ·  π )  <  𝐴  ↔  - 𝐴  <  - - ( 2  ·  π ) ) ) | 
						
							| 67 | 65 66 | mpbid | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - 𝐴  <  - - ( 2  ·  π ) ) | 
						
							| 68 | 16 | recnd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 69 | 68 | negnegd | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  - - ( 2  ·  π )  =  ( 2  ·  π ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - - ( 2  ·  π )  =  ( 2  ·  π ) ) | 
						
							| 71 | 67 70 | breqtrd | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - 𝐴  <  ( 2  ·  π ) ) | 
						
							| 72 | 48 49 51 55 71 | eliood | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - 𝐴  ∈  ( 0 (,) ( 2  ·  π ) ) ) | 
						
							| 73 |  | sinaover2ne0 | ⊢ ( - 𝐴  ∈  ( 0 (,) ( 2  ·  π ) )  →  ( sin ‘ ( - 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( sin ‘ ( - 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 75 | 47 74 | eqnetrd | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  - ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 76 | 75 | neneqd | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ¬  - ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) | 
						
							| 77 | 38 | sincld | ⊢ ( 𝐴  ∈  ( - π [,] π )  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( sin ‘ ( 𝐴  /  2 ) )  ∈  ℂ ) | 
						
							| 79 | 78 | negeq0d | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( ( sin ‘ ( 𝐴  /  2 ) )  =  0  ↔  - ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) ) | 
						
							| 80 | 76 79 | mtbird | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ¬  ( sin ‘ ( 𝐴  /  2 ) )  =  0 ) | 
						
							| 81 | 80 | neqned | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  <  0 )  →  ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 82 | 31 36 81 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  ∧  ¬  0  <  𝐴 )  →  ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) | 
						
							| 83 | 30 82 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ( - π [,] π )  ∧  𝐴  ≠  0 )  →  ( sin ‘ ( 𝐴  /  2 ) )  ≠  0 ) |