| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem55.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem55.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
fourierdlem55.r |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 4 |
|
fourierdlem55.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 5 |
|
fourierdlem55.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
| 6 |
|
fourierdlem55.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 7 |
|
fourierdlem55.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
| 8 |
1 2 3 4 5
|
fourierdlem9 |
⊢ ( 𝜑 → 𝐻 : ( - π [,] π ) ⟶ ℝ ) |
| 9 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐻 ‘ 𝑠 ) ∈ ℝ ) |
| 10 |
6
|
fourierdlem43 |
⊢ 𝐾 : ( - π [,] π ) ⟶ ℝ |
| 11 |
10
|
ffvelcdmi |
⊢ ( 𝑠 ∈ ( - π [,] π ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐾 ‘ 𝑠 ) ∈ ℝ ) |
| 13 |
9 12
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ∈ ℝ ) |
| 14 |
13 7
|
fmptd |
⊢ ( 𝜑 → 𝑈 : ( - π [,] π ) ⟶ ℝ ) |