Description: H is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem9.f | |
|
fourierdlem9.x | |
||
fourierdlem9.r | |
||
fourierdlem9.w | |
||
fourierdlem9.h | |
||
Assertion | fourierdlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem9.f | |
|
2 | fourierdlem9.x | |
|
3 | fourierdlem9.r | |
|
4 | fourierdlem9.w | |
|
5 | fourierdlem9.h | |
|
6 | 0red | |
|
7 | 1 | adantr | |
8 | 2 | adantr | |
9 | pire | |
|
10 | 9 | renegcli | |
11 | iccssre | |
|
12 | 10 9 11 | mp2an | |
13 | 12 | sseli | |
14 | 13 | adantl | |
15 | 8 14 | readdcld | |
16 | 7 15 | ffvelcdmd | |
17 | 16 | adantr | |
18 | 3 4 | ifcld | |
19 | 18 | ad2antrr | |
20 | 17 19 | resubcld | |
21 | 14 | adantr | |
22 | neqne | |
|
23 | 22 | adantl | |
24 | 20 21 23 | redivcld | |
25 | 6 24 | ifclda | |
26 | 25 5 | fmptd | |