Metamath Proof Explorer


Theorem fourierdlem9

Description: H is a complex function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem9.f φF:
fourierdlem9.x φX
fourierdlem9.r φY
fourierdlem9.w φW
fourierdlem9.h H=sππifs=00FX+sif0<sYWs
Assertion fourierdlem9 φH:ππ

Proof

Step Hyp Ref Expression
1 fourierdlem9.f φF:
2 fourierdlem9.x φX
3 fourierdlem9.r φY
4 fourierdlem9.w φW
5 fourierdlem9.h H=sππifs=00FX+sif0<sYWs
6 0red φsππs=00
7 1 adantr φsππF:
8 2 adantr φsππX
9 pire π
10 9 renegcli π
11 iccssre ππππ
12 10 9 11 mp2an ππ
13 12 sseli sππs
14 13 adantl φsππs
15 8 14 readdcld φsππX+s
16 7 15 ffvelcdmd φsππFX+s
17 16 adantr φsππ¬s=0FX+s
18 3 4 ifcld φif0<sYW
19 18 ad2antrr φsππ¬s=0if0<sYW
20 17 19 resubcld φsππ¬s=0FX+sif0<sYW
21 14 adantr φsππ¬s=0s
22 neqne ¬s=0s0
23 22 adantl φsππ¬s=0s0
24 20 21 23 redivcld φsππ¬s=0FX+sif0<sYWs
25 6 24 ifclda φsππifs=00FX+sif0<sYWs
26 25 5 fmptd φH:ππ