Metamath Proof Explorer


Theorem fpr2

Description: Law of well-founded recursion over a partial order, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023) (Proof shortened by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fprr.1 F=frecsRAG
Assertion fpr2 RFrARPoARSeAXAFX=XGFPredRAX

Proof

Step Hyp Ref Expression
1 fprr.1 F=frecsRAG
2 1 fpr1 RFrARPoARSeAFFnA
3 2 fndmd RFrARPoARSeAdomF=A
4 3 eleq2d RFrARPoARSeAXdomFXA
5 4 biimpar RFrARPoARSeAXAXdomF
6 1 fpr2a RFrARPoARSeAXdomFFX=XGFPredRAX
7 5 6 syldan RFrARPoARSeAXAFX=XGFPredRAX