Metamath Proof Explorer


Theorem fpr3

Description: Law of well-founded recursion over a partial order, part three. Finally, we show that F is unique. We do this by showing that any function H with the same properties we proved of F in fpr1 and fpr2 is identical to F . (Contributed by Scott Fenton, 11-Sep-2023)

Ref Expression
Hypothesis fprr.1 F=frecsRAG
Assertion fpr3 RFrARPoARSeAHFnAzAHz=zGHPredRAzF=H

Proof

Step Hyp Ref Expression
1 fprr.1 F=frecsRAG
2 simpl RFrARPoARSeAHFnAzAHz=zGHPredRAzRFrARPoARSeA
3 1 fpr1 RFrARPoARSeAFFnA
4 1 fpr2 RFrARPoARSeAzAFz=zGFPredRAz
5 4 ralrimiva RFrARPoARSeAzAFz=zGFPredRAz
6 3 5 jca RFrARPoARSeAFFnAzAFz=zGFPredRAz
7 6 adantr RFrARPoARSeAHFnAzAHz=zGHPredRAzFFnAzAFz=zGFPredRAz
8 simpr RFrARPoARSeAHFnAzAHz=zGHPredRAzHFnAzAHz=zGHPredRAz
9 fpr3g RFrARPoARSeAFFnAzAFz=zGFPredRAzHFnAzAHz=zGHPredRAzF=H
10 2 7 8 9 syl3anc RFrARPoARSeAHFnAzAHz=zGHPredRAzF=H