Metamath Proof Explorer


Theorem fprodcom

Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)

Ref Expression
Hypotheses fprodcom.1 φAFin
fprodcom.2 φBFin
fprodcom.3 φjAkBC
Assertion fprodcom φjAkBC=kBjAC

Proof

Step Hyp Ref Expression
1 fprodcom.1 φAFin
2 fprodcom.2 φBFin
3 fprodcom.3 φjAkBC
4 2 adantr φjABFin
5 ancom jAkBkBjA
6 5 a1i φjAkBkBjA
7 1 2 4 6 3 fprodcom2 φjAkBC=kBjAC