Metamath Proof Explorer


Theorem fprodnncl

Description: Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 φAFin
fprodnncl.2 φkAB
Assertion fprodnncl φkAB

Proof

Step Hyp Ref Expression
1 fprodcl.1 φAFin
2 fprodnncl.2 φkAB
3 nnsscn
4 3 a1i φ
5 nnmulcl xyxy
6 5 adantl φxyxy
7 1nn 1
8 7 a1i φ1
9 4 6 1 2 8 fprodcllem φkAB