Metamath Proof Explorer


Theorem frege133

Description: If the procedure R is single-valued and if M and Y follow X in the R -sequence, then Y belongs to the R -sequence beginning with M or precedes M in the R -sequence. Proposition 133 of Frege1879 p. 86. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege133.x XU
frege133.y YV
frege133.m MW
frege133.r RS
Assertion frege133 FunR-1-1Xt+RMXt+RY¬Yt+RMMt+RIY

Proof

Step Hyp Ref Expression
1 frege133.x XU
2 frege133.y YV
3 frege133.m MW
4 frege133.r RS
5 fvex t+RV
6 5 cnvex t+R-1V
7 imaexg t+R-1Vt+R-1MV
8 6 7 ax-mp t+R-1MV
9 imaundir t+RIM=t+RMIM
10 imaexg t+RVt+RMV
11 5 10 ax-mp t+RMV
12 imai IM=M
13 snex MV
14 12 13 eqeltri IMV
15 11 14 unex t+RMIMV
16 9 15 eqeltri t+RIMV
17 1 2 4 8 16 frege83 Rhereditaryt+R-1Mt+RIMXt+R-1MXt+RYYt+R-1Mt+RIM
18 3 elexi MV
19 1 elexi XV
20 18 19 elimasn Xt+R-1MMXt+R-1
21 df-br Mt+R-1XMXt+R-1
22 18 19 brcnv Mt+R-1XXt+RM
23 20 21 22 3bitr2i Xt+R-1MXt+RM
24 elun Yt+R-1Mt+RIMYt+R-1MYt+RIM
25 df-or Yt+R-1MYt+RIM¬Yt+R-1MYt+RIM
26 2 elexi YV
27 18 26 elimasn Yt+R-1MMYt+R-1
28 df-br Mt+R-1YMYt+R-1
29 18 26 brcnv Mt+R-1YYt+RM
30 27 28 29 3bitr2i Yt+R-1MYt+RM
31 30 notbii ¬Yt+R-1M¬Yt+RM
32 18 26 elimasn Yt+RIMMYt+RI
33 df-br Mt+RIYMYt+RI
34 32 33 bitr4i Yt+RIMMt+RIY
35 31 34 imbi12i ¬Yt+R-1MYt+RIM¬Yt+RMMt+RIY
36 24 25 35 3bitri Yt+R-1Mt+RIM¬Yt+RMMt+RIY
37 36 imbi2i Xt+RYYt+R-1Mt+RIMXt+RY¬Yt+RMMt+RIY
38 23 37 imbi12i Xt+R-1MXt+RYYt+R-1Mt+RIMXt+RMXt+RY¬Yt+RMMt+RIY
39 38 imbi2i Rhereditaryt+R-1Mt+RIMXt+R-1MXt+RYYt+R-1Mt+RIMRhereditaryt+R-1Mt+RIMXt+RMXt+RY¬Yt+RMMt+RIY
40 3 4 frege132 Rhereditaryt+R-1Mt+RIMXt+RMXt+RY¬Yt+RMMt+RIYFunR-1-1Xt+RMXt+RY¬Yt+RMMt+RIY
41 39 40 sylbi Rhereditaryt+R-1Mt+RIMXt+R-1MXt+RYYt+R-1Mt+RIMFunR-1-1Xt+RMXt+RY¬Yt+RMMt+RIY
42 17 41 ax-mp FunR-1-1Xt+RMXt+RY¬Yt+RMMt+RIY