Metamath Proof Explorer


Theorem frege57c

Description: Swap order of implication in ax-frege52c . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis frege57c.a A C
Assertion frege57c A = B [˙B / x]˙ φ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 frege57c.a A C
2 ax-frege52c B = A [˙B / x]˙ φ [˙A / x]˙ φ
3 1 frege56c B = A [˙B / x]˙ φ [˙A / x]˙ φ A = B [˙B / x]˙ φ [˙A / x]˙ φ
4 2 3 ax-mp A = B [˙B / x]˙ φ [˙A / x]˙ φ